RESUMO
BACKGROUND: Early-onset breast cancer (EOBC) affects about one in 300 women aged 40 years or younger and is associated with worse outcomes than later onset breast cancer. This study explored novel serum proteins as surrogate markers of prognosis in patients with EOBC. METHODS: Serum samples from EOBC patients (stages 1-3) were analysed using agnostic high-precision quantitative proteomics. Patients received anthracycline-based chemotherapy. The discovery cohort (n = 399) either had more than 5-year disease-free survival (DFS) (good outcome group, n = 203) or DFS of less than 2 years (poor outcome group, n = 196). Expressed proteins were assessed for differential expression between the two groups. Bioinformatics pathway and network analysis in combination with literature research were used to determine clinically relevant proteins. ELISA analysis against an independent sample set from the Prospective study of Outcomes in Sporadic versus Hereditary breast cancer (POSH) cohort (n = 181) was used to validate expression levels of the selected target. Linear and generalized linear modelling was applied to determine the effect of target markers, body mass index (BMI), lymph node involvement (LN), oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 status on patients' outcome. RESULTS: A total of 5346 unique proteins were analysed (peptide FDR p ≤ 0.05). Of these, 812 were differentially expressed in the good vs poor outcome groups and showed significant enrichment for the insulin signalling (p = 0.01) and the glycolysis/gluconeogenesis (p = 0.01) pathways. These proteins further correlated with interaction networks involving glucose and fatty acid metabolism. A consistent nodal protein to these metabolic networks was resistin (upregulated in the good outcome group, p = 0.009). ELISA validation demonstrated resistin to be upregulated in the good outcome group (p = 0.04), irrespective of BMI and ER status. LN involvement was the only covariate with a significant association with resistin measurements (p = 0.004). An ancillary in-silico observation was the induction of the inflammatory response, leucocyte infiltration, lymphocyte migration and recruitment of phagocytes (p < 0.0001, z-score > 2). Survival analysis showed that resistin overexpression was associated with improved DFS. CONCLUSIONS: Higher circulating resistin correlated with node-negative patients and longer DFS independent of BMI and ER status in women with EOBC. Overexpression of serum resistin in EOBC may be a surrogate indicator of improved prognosis.
Assuntos
Proteínas Sanguíneas/genética , Neoplasias da Mama/sangue , Proteômica , Resistina/sangue , Adulto , Biomarcadores Tumorais/sangue , Índice de Massa Corporal , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Resistência à Insulina , Linfonodos/patologia , Células Neoplásicas Circulantes/patologia , Prognóstico , Receptores de Estrogênio/genética , Receptores de Progesterona/genéticaRESUMO
Despite advances in molecular medicine, genomics, proteomics and translational research, prostate cancer remains the second most common cause of cancer-related mortality for men in the Western world. Clearly, early detection, targeted treatment and post-treatment monitoring are vital tools to combat this disease. Tumor markers can be useful for diagnosis and early detection of cancer, assessment of prognosis, prediction of therapeutic effect and treatment monitoring. Such tumor markers include prostate-specific antigen (prostate), cancer antigen (CA)15.3 (breast), CA125 (ovarian), CA19.9 (gastrointestinal) and serum alpha-fetoprotein (testicular cancer). However, all of these biomarkers lack sensitivity and specificity and, therefore, there is a large drive towards proteomic biomarker discovery. Current research efforts are directed towards discovering biosignatures from biological samples using novel proteomic technologies that provide high-throughput, in-depth analysis and quantification of the proteome. Several of these studies have revealed promising biomarkers for use in diagnosis, assessment of prognosis, and targeting treatment of prostate cancer. This review focuses on prostate cancer proteomic biomarker discovery and its future potential.
Assuntos
Neoplasias da Próstata/diagnóstico , Proteômica/métodos , Biomarcadores Tumorais , Humanos , Masculino , Proteínas de Neoplasias/análise , Proteômica/instrumentaçãoRESUMO
Breast cancers are the most common cancer-affecting women; critically the identification of novel biomarkers for improving early detection, stratification and differentiation from benign tumours is important for the reduction of morbidity and mortality.To identify and functionally characterise potential biomarkers, we used mass spectrometry (MS) to analyse serum samples representing control, benign breast disease (BBD) and invasive breast cancer (IDC) patients. Complementary and multidimensional proteomic approaches were used to identify and validate novel serum markers.Annexin A3 (ANX A3) was found to be differentially expressed amongst different breast pathologies. The diagnostic value of serum ANX A3 was subsequently validated by ELISA in an independent serum set representing the three groups. Here, ANX A3 was significantly upregulated in the benign disease group sera compared with other groups (P < 0.0005).In addition, paired breast tissue immunostaining confirmed that ANX A3 was abundantly expressed in benign and to a lesser extent malignant neoplastic epithelium. Finally, we illustrated ANX A3 expression in cell culture lysates and conditioned media from neoplastic breast cell lines, and its role in neoplastic breast cell migration in vitro.This study confirms the novel role of ANX A3 as a mammary biomarker, regulator and therapeutic target.
Assuntos
Anexina A3/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Idoso , Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Meios de Cultivo Condicionados , Ensaio de Imunoadsorção Enzimática , Epitélio/patologia , Feminino , Inativação Gênica , Humanos , Imuno-Histoquímica , Células MCF-7 , Espectrometria de Massas , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
BACKGROUND: The incidence of prostate cancer (PCa) has increased in recent years due to the aging of the population and increased testing; however, mortality rates have remained largely unchanged. Studies have shown deficiencies in predicting patient outcome for both of the major PCa diagnostic tools, namely prostate specific antigen (PSA) and transrectal ultrasound-guided biopsy. Therefore, serum biomarkers are needed that accurately predict prognosis of PCa (indolent vs. aggressive) and can thus inform clinical management. AIM: This study uses surface enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF-MS) mass spectrometry analysis to identify differential serum protein expression between PCa patients with indolent vs. aggressive disease categorised by Gleason grade and biochemical recurrence. MATERIALS AND METHODS: A total of 99 serum samples were selected for analysis. According to Gleason score, indolent (45 samples) and aggressive (54) forms of PCa were compared using univariate analysis. The same samples were then separated into groups of different recurrence status (10 metastatic, 15 biochemical recurrences and 70 non-recurrences) and subjected to univariate analysis in the same way. The data from Gleason score and recurrence groups were then analysed using multivariate statistical analysis to improve PCa biomarker classification. RESULTS: The comparison between serum protein spectra from indolent and aggressive samples resulted in the identification of twenty-six differentially expressed protein peaks (p<0.05), of which twenty proteins were found with 99% confidence. A total of 18 differentially expressed proteins (p<0.05) were found to distinguish between recurrence groups; three of these were robust with p<0.01. Sensitivity and specificity within the Gleason score group was 73.3% and 60% respectively and for the recurrence group 70% and 62.5%. CONCLUSION: SELDI-TOF-MS technology has facilitated the discovery of prognostic biomarkers in serum that can successfully discriminate aggressive from indolent PCa and also differentiate between recurrence groups.