Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(8): 2553-2570, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35201367

RESUMO

The design and production of incurred test materials are critical for the development and validation of methods for food allergen analysis. This is because production and processing conditions, together with the food matrix, can modify allergens affecting their structure, extractability and detectability. For the ThRAll project, which aims to develop a mass spectrometry-based reference method for the simultaneous accurate quantification of six allergenic ingredients in two hard to analyse matrices. Two highly processed matrices, chocolate bars and broth powder, were selected to incur with six allergenic ingredients (egg, milk, peanut, soy, hazelnut and almond) at 2, 4, 10 and 40 mg total allergenic protein/kg food matrix using a pilot-scale food manufacturing plant. The allergenic activity of the ingredients incurred was verified using food-allergic patient serum/plasma IgE, the homogeneity of the incurred matrices verified and their stability at 4 °C assessed over at least 30-month storage using appropriate enzyme-linked immunosorbent assays (ELISA). Allergens were found at all levels from the chocolate bar and were homogenously distributed, apart from peanut and soy which could only be determined above 4 mg total allergenic ingredient protein/kg. The homogeneity assessment was restricted to analysis of soy, milk and peanut for the broth powder but nevertheless demonstrated that the allergens were homogeneously distributed. All the allergens tested were found to be stable in the incurred matrices for at least 30 months demonstrating they are suitable for method development.


Assuntos
Chocolate , Hipersensibilidade Alimentar , Alérgenos/análise , Arachis/química , Chocolate/análise , Ensaio de Imunoadsorção Enzimática , Análise de Alimentos/métodos , Humanos , Pós
2.
Eur J Nutr ; 61(6): 2873-2880, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35235033

RESUMO

Amylase/trypsin inhibitors (ATIs) are widely consumed in cereal-based foods and have been implicated in adverse reactions to wheat exposure, such as respiratory and food allergy, and intestinal responses associated with coeliac disease and non-coeliac wheat sensitivity. ATIs occur in multiple isoforms which differ in the amounts present in different types of wheat (including ancient and modern ones). Measuring ATIs and their isoforms is an analytical challenge as is their isolation for use in studies addressing their potential effects on the human body. ATI isoforms differ in their spectrum of bioactive effects in the human gastrointestinal (GI), which may include enzyme inhibition, inflammation and immune responses and of which much is not known. Similarly, although modifications during food processing (exposure to heat, moisture, salt, acid, fermentation) may affect their structure and activity as shown in vitro, it is important to relate these changes to effects that may present in the GI tract. Finally, much of our knowledge of their potential biological effects is based on studies in vitro and in animal models. Validation by human studies using processed foods as commonly consumed is warranted. We conclude that more detailed understanding of these factors may allow the effects of ATIs on human health to be better understood and when possible, to be ameliorated, for example by innovative food processing. We therefore review in short our current knowledge of these proteins, focusing on features which relate to their biological activity and identifying gaps in our knowledge and research priorities.


Assuntos
Doença Celíaca , Inibidores da Tripsina , Amilases , Animais , Humanos , Proteínas de Plantas , Tripsina , Inibidores da Tripsina/química
3.
Crit Rev Food Sci Nutr ; 60(1): 147-156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30463417

RESUMO

Wheat gluten can be chemically or enzymatically hydrolysed to produce functional ingredients useful in food and cosmetics. However severe allergies to hydrolysed wheat proteins (HWP) have been described in Europe and Japan since the early 2000's. Triggering proteins and IgE epitopes were described both for French and Japanese cohorts and appeared remarkably similar leading to define a new wheat allergic entity. Deamidation induced by functionalisation generate neo-allergens responsible for this particular allergy. This article aims to review the processes leading to deamidation and the clinical features of the patients suffering from this allergy. Then the molecular determinants involved in HWP-allergy were exhaustively described and hypothesis regarding the sensitizing mechanism of HWP-allergy are discussed. Finally, current regulation and tools aiming at managing this risk associated with HWP are presented.


Assuntos
Alérgenos , Glutens/efeitos adversos , Proteínas de Vegetais Comestíveis/efeitos adversos , Hidrolisados de Proteína/efeitos adversos , Hipersensibilidade a Trigo , Humanos , Imunoglobulina E , Estrutura Molecular , Triticum/química
5.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823634

RESUMO

Although wheat is used worldwide as a staple food, it can give rise to adverse reactions, for which the triggering factors have not been identified yet. These reactions can be caused mainly by kernel proteins, both gluten and non-gluten proteins. Among these latter proteins, α-amylase/trypsin inhibitors (ATI) are involved in baker's asthma and realistically in Non Celiac Wheat Sensitivity (NCWS). In this paper, we report characterization of three transgenic lines obtained from the bread wheat cultivar Bobwhite silenced by RNAi in the three ATI genes CM3, CM16 and 0.28. We have obtained transgenic lines showing an effective decrease in the activity of target genes that, although showing a higher trypsin inhibition as a pleiotropic effect, generate a lower reaction when tested with sera of patients allergic to wheat, accounting for the important role of the three target proteins in wheat allergies. Finally, these lines show unintended differences in high molecular weight glutenin subunits (HMW-GS) accumulation, involved in technological performances, but do not show differences in terms of yield. The development of new genotypes accumulating a lower amount of proteins potentially or effectively involved in allergies to wheat and NCWS, not only offers the possibility to use them as a basis for the production of varieties with a lower impact on adverse reaction, but also to test if these proteins are actually implicated in those pathologies for which the triggering factor has not been established yet.


Assuntos
Alérgenos/efeitos adversos , Pão , Genes de Plantas , Interferência de RNA , Triticum/genética , Regulação da Expressão Gênica de Plantas , Humanos , Hipersensibilidade/sangue , Imunoglobulina E/metabolismo , Proteínas de Plantas/efeitos adversos , Plantas Geneticamente Modificadas , Ligação Proteica , Solubilidade , Transformação Genética , Triticum/crescimento & desenvolvimento , alfa-Amilases/metabolismo
6.
Int J Mol Sci ; 21(1)2019 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905787

RESUMO

The cell wall is an important compartment in grain cells that fulfills both structural and functional roles. It has a dynamic structure that is constantly modified during development and in response to biotic and abiotic stresses. Non-structural cell wall proteins (CWPs) are key players in the remodeling of the cell wall during events that punctuate the plant life. Here, a subcellular and quantitative proteomic approach was carried out to identify CWPs possibly involved in changes in cell wall metabolism at two key stages of wheat grain development: the end of the cellularization step and the beginning of storage accumulation. Endosperm and outer layers of wheat grain were analyzed separately as they have different origins (maternal and seed) and functions in grains. Altogether, 734 proteins with predicted signal peptides were identified (CWPs). Functional annotation of CWPs pointed out a large number of proteins potentially involved in cell wall polysaccharide remodeling. In the grain outer layers, numerous proteins involved in cutin formation or lignin polymerization were found, while an unexpected abundance of proteins annotated as plant invertase/pectin methyl esterase inhibitors were identified in the endosperm. In addition, numerous CWPs were accumulating in the endosperm at the grain filling stage, thus revealing strong metabolic activities in the cell wall during endosperm cell differentiation, while protein accumulation was more intense at the earlier stage of development in outer layers. Altogether, our work gives important information on cell wall metabolism during early grain development in both parts of the grain, namely the endosperm and outer layers. The wheat cell wall proteome is the largest cell wall proteome of a monocot species found so far.


Assuntos
Parede Celular/metabolismo , Grão Comestível/crescimento & desenvolvimento , Endosperma/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Sementes/metabolismo , Triticum/embriologia , Triticum/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Grão Comestível/citologia , Grão Comestível/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Polissacarídeos/metabolismo
7.
J Food Sci Technol ; 56(1): 177-186, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30728559

RESUMO

The main aim of this study was to develop a continuous microwave treatment system of whey proteins and then apply this process at 37 °C, 50 °C, 65 °C and 70 °C to achieve pepsinolysis and produce extensively hydrolysed bovine whey protein hydrolysates with low allergenic properties. The microwave process was compared to a conventional thermal treatment with similar temperature set points. Both processes were deeply analysed in terms of the thermal kinetics and operating conditions. The pepsin hydrolysates obtained by the continuous microwave treatment and conventional heating were characterized by SDS-PAGE and RP-HPLC. The allergenicity of the whey protein hydrolysates was explored using a human IgE sensitized rat basophil leukaemia cell assay. The results indicate that extensively hydrolysed whey protein hydrolysates were obtained by microwave only at 65 °C and in a shorter time compared with the conventional thermal treatment. In the same temperature conditions under conventional heating, ß-lactoglobulin was resistant to pepsinolysis, and 37% of it remained intact. As demonstrated by an in vitro degranulation assay using specific human IgE-sensitized rat basophils, the extensively hydrolysed whey protein obtained by microwave showed maximum degranulation values of 6.53% compared to those of the native whey protein isolate (45.97%) and hence elicited no more allergenic reactions in basophils. This work emphasizes the potential industrial use of microwave heating specific to milk protein processing to reduce their allergenicity and improve their end-use properties.

8.
Proteomics ; 18(23): e1800286, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30288912

RESUMO

The remodeling of cell wall polysaccharides is controlled by cell wall proteins (CWPs) during the development of wheat grain. This work describes for the first time the cell wall proteomes of the endosperm and outer layers of the wheat developing grain, which have distinct physiological functions and technological uses. Altogether 636 nonredundant predicted CWPs are identified with 337 proteins in the endosperm and 594 proteins in the outer layers, among which 295 proteins are present in both tissues, suggesting both common and tissue specific remodeling activities. These proteins are distributed into eight functional classes. Approximatively a quarter of them were predicted to act on cell wall polysaccharides, with many glycosylhydrolases and also expansin, lyases, and carbohydrate esterases. Therefore, these results provide crucial data to go further in the understanding of relationship between tissue-specific morphogenesis and cell wall remodeling in cereals. Data are available via ProteomeXchange with identifier PXD010367.


Assuntos
Endosperma/metabolismo , Proteoma/análise , Triticum/metabolismo , Parede Celular/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/metabolismo
9.
Molecules ; 22(1)2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28054991

RESUMO

In this study, extraction of soluble proteins from rapeseed cake using different conventional and innovative extraction processes in order to maximize the extraction yield has been investigated. Firstly, various extraction techniques including ultrasound, microwave, and percolation were tested to increase the protein recovery efficiency. Secondly, response surface methodology (RSM) using a central composite design (CCD) approach was applied to investigate the influence of process variables on ultrasound-assisted extraction (UAE). Statistical analysis revealed that the optimized conditions providing a protein yield of 4.24 g/100 g DM were an ultrasound power of 5.6 W·cm-2 and temperature of 45 °C. Quantitatively UAE followed by two stages of conventional extraction gave the best total protein yield of 9.81 g/100 g DM. Qualitatively, the protein efficiency ratio (PER) used as measure of the nutritive value (12S/2S ratio) which indicates protein quality in terms of S-containing essential amino acids, was similar to that of the conventional extraction method. Small amounts of protein aggregate were observed in the HPLC profile of the extract.


Assuntos
Brassica rapa/química , Química Verde , Extratos Vegetais/química , Proteínas de Plantas/isolamento & purificação , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão , Análise Fatorial , Micro-Ondas , Sonicação , Temperatura
10.
J Proteome Res ; 15(10): 3481-3488, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27571036

RESUMO

Several proteomic database search engines that interpret LC-MS/MS data do not identify the same set of peptides. These disagreements occur even when the scores of the peptide-to-spectrum matches suggest good confidence in the interpretation. Our study shows that these disagreements observed for the interpretations of a given spectrum are almost exclusively due to the variation of what we call the "peptide space", i.e., the set of peptides that are actually compared to the experimental spectra. We discuss the potential difficulties of precisely defining the "peptide space." Indeed, although several parameters that are generally reported in publications can easily be set to the same values, many additional parameters-with much less straightforward user access-might impact the "peptide space" used by each program. Moreover, in a configuration where each search engine identifies the same candidates for each spectrum, the inference of the proteins may remain quite different depending on the false discovery rate selected.


Assuntos
Interpretação Estatística de Dados , Proteômica/métodos , Ferramenta de Busca/normas , Espectrometria de Massas em Tandem/normas , Bases de Dados de Proteínas , Reações Falso-Positivas , Proteômica/normas
11.
Proteomics ; 15(10): 1736-45, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25764008

RESUMO

Food allergy has become a major health issue in developed countries, therefore there is an urgent need to develop analytical methods able to detect and quantify with a good sensitivity and reliability some specific allergens in complex food matrices. In this paper, we present a targeted MS/MS approach to compare the relative abundance of the major recognized wheat allergens in the salt-soluble (albumin/globulin) fraction of wheat grains. Twelve allergens were quantified in seven wheat varieties, selected from three Triticum species: T. aestivum (bread wheat), T. durum (durum wheat), and T. monococcum. The allergens were monitored from one or two proteotypic peptides and their relative abundance was deduced from the intensity of one fragment measured in MS/MS. Whereas the abundance of some of the targeted allergens was quite stable across the genotypes, others like alpha-amylase inhibitors showed clear differences according to the wheat species, in accordance with the results of earlier functional studies. This study enriches the scarce knowledge available on allergens content in wheat genotypes, and brings new perspectives for food safety and plant breeding.


Assuntos
Alérgenos/imunologia , Espectrometria de Massas em Tandem/métodos , Triticum/imunologia , Alérgenos/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Análise de Componente Principal
12.
Proteomics ; 15(13): 2296-306, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25787258

RESUMO

Cell walls play key roles during plant development. Following their deposition into the cell wall, polysaccharides are continually remodeled according to the growth stage and stress environment to accommodate cell growth and differentiation. To date, little is known concerning the enzymes involved in cell wall remodeling, especially in gramineous and particularly in the grain during development. Here, we investigated the cell wall proteome of the grain of Brachypodium distachyon. This plant is a suitable model for temperate cereal crops. Among the 601 proteins identified, 299 were predicted to be secreted. These proteins were distributed into eight functional classes; the class of proteins that act on carbohydrates was the most highly represented. Among these proteins, numerous glycoside hydrolases were found. Expansins and peroxidases, which are assumed to be involved in cell wall polysaccharide remodeling, were also identified. Approximately half of the proteins identified in this study were newly discovered in grain and were not identified in the previous proteome analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of B. distachyon infer a global cell wall proteome consisting of 460 proteins. At present, this is the most extensive cell wall proteome of a monocot species.


Assuntos
Brachypodium/metabolismo , Parede Celular/metabolismo , Proteômica/métodos , Proteínas de Plantas/metabolismo
13.
J Exp Bot ; 66(9): 2649-58, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769308

RESUMO

Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called 'the bran' is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel).


Assuntos
Parede Celular/metabolismo , Fibras na Dieta/metabolismo , Triticum/metabolismo , Parede Celular/enzimologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteômica , Triticum/enzimologia
14.
Food Res Int ; 169: 112932, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254358

RESUMO

The increasing exposure of the population to Cannabis sativa has revealed allergies to different parts of the plant, among which hemp seed. Nonetheless, the major hemp seed allergens remain to be identified. Several known families of allergens are present in hemp seed, including notably seed storage proteins. We therefore aimed to investigate the potential allergenicity of the hemp seed storage proteins and their potential cross-reactivity to different seeds and nuts. For this, we extracted hemp seed proteins sequentially using buffers with increasing levels of salinity (H2O, T2 and T3) to yield extracts differentially enriched in storage proteins. We used these extracts to perform immunoblots and ELISAs using sera of patients either sensitized to hemp seeds or sensitized/allergic to other seeds and nuts. Immunoblots and proteomics analyses identified vicilins and edestins as potential hemp seed allergens. Moreover, ELISA analyses revealed a correlation between sensitization to hazelnut and the hemp seed T3 extract (enriched in storage proteins). The possible cross-reactivity between hazelnut and hemp seed proteins was further strengthened by the results from inhibition ELISAs: the incubation of sera from hazelnut-sensitized individuals with increasing concentrations of the T3 extract inhibited serum IgE binding to the hazelnut extract by about 25-30%. Our study thus identifies vicilins and edestins as potential hemp seed allergens and highlights a possible cross-reactivity with hazelnut. The clinical relevance of this cross-reactivity between hemp seed and hazelnut needs to be further investigated in hazelnut-allergic individuals.


Assuntos
Cannabis , Corylus , Hipersensibilidade a Noz , Humanos , Alérgenos , Antígenos de Plantas , Imunoglobulina E , Proteínas de Armazenamento de Sementes , Sementes , Extratos Vegetais
15.
Food Chem ; 395: 133624, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35820272

RESUMO

Ovalbumin (OVA) is a food allergen whose allergenicity is modulated by heating. We aimed to establish a molecular connection between heat-induced structural modifications and the modulation of the IgE binding capacity of OVA. For this, we used model samples of heat-modified OVA with increasing complexity; glycated, aggregated, or glycated and aggregated. Using sera from egg-allergic individuals, we show that both aggregation and glycation strongly impacted IgE binding capacity, despite limited structural changes for glycated OVA. A molecular exploration at the amino acid level using high-resolution mass spectrometry revealed extensive cross-linking, mostly through disulfide and dehydroprotein bridges, and moderate but significant glycation. Structural modifications affected residues located within or at a few amino acids distance of known human linear IgE epitopes, such as C121, K123, S169, K190, K207, H332 and C368. We thus unveil key amino residues implicated in the changes in IgE binding of OVA induced by heating.


Assuntos
Hipersensibilidade Alimentar , Imunoglobulina E , Alérgenos/química , Alérgenos/genética , Calefação , Humanos , Imunoglobulina E/metabolismo , Espectrometria de Massas , Ovalbumina/química
16.
Probiotics Antimicrob Proteins ; 14(5): 779-791, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34081268

RESUMO

Wheat is a worldwide staple food, yet some people suffer from strong immunological reactions after ingesting wheat-based products. Lactic acid bacteria (LAB) constitute a promising approach to reduce wheat allergenicity because of their proteolytic system. In this study, 172 LAB strains were screened for their proteolytic activity on gluten proteins and α-amylase inhibitors (ATIs) by SDS-PAGE and RP-HPLC. Gliadins, glutenins, and ATI antigenicity and allergenicity were assessed by Western blot/Dot blot and by degranulation assay using RBL-SX38 cells. The screening resulted in selecting 9 high gluten proteolytic strains belonging to two species: Enterococcus faecalis and Lactococcus lactis. Proteomic analysis showed that one of selected strains, Lc. lactis LLGKC18, caused degradation of the main gluten allergenic proteins. A significant decrease of the gliadins, glutenins, and ATI antigenicity was observed after fermentation of gluten by Lc. lactis LLGKC18, regardless the antibody used in the tests. Also, the allergenicity as measured by the RBL-SX38 cell degranulation test was significantly reduced. These results indicate that Lc. lactis LLGKC18 gluten fermentation can be deeply explored for its capability to hydrolyze the epitopes responsible for wheat allergy.


Assuntos
Lactobacillales , Lactococcus lactis , Alérgenos/metabolismo , Fermentação , Gliadina/metabolismo , Glutens/metabolismo , Humanos , Imunoglobulina E/metabolismo , Lactobacillales/metabolismo , Lactococcus lactis/metabolismo , Proteômica
17.
Clin Rev Allergy Immunol ; 62(1): 1-36, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33411319

RESUMO

Key determinants for the development of an allergic response to an otherwise 'harmless' food protein involve different factors like the predisposition of the individual, the timing, the dose, the route of exposure, the intrinsic properties of the allergen, the food matrix (e.g. lipids) and the allergen modification by food processing. Various physicochemical parameters can have an impact on the allergenicity of animal proteins. Following our previous review on how physicochemical parameters shape plant protein allergenicity, the same analysis was proceeded here for animal allergens. We found that each parameter can have variable effects, ranging on an axis from allergenicity enhancement to resolution, depending on its nature and the allergen. While glycosylation and phosphorylation are common, both are not universal traits of animal allergens. High molecular structures can favour allergenicity, but structural loss and uncovering hidden epitopes can also have a similar impact. We discovered that there are important knowledge gaps in regard to physicochemical parameters shaping protein allergenicity both from animal and plant origin, mainly because the comparability of the data is poor. Future biomolecular studies of exhaustive, standardised design together with strong validation part in the clinical context, together with data integration model systems will be needed to unravel causal relationships between physicochemical properties and the basis of protein allergenicity.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Alérgenos/química , Animais , Epitopos , Manipulação de Alimentos , Humanos , Proteínas
18.
Clin Rev Allergy Immunol ; 62(1): 37-63, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32876924

RESUMO

This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Alérgenos/química , Animais , Hipersensibilidade Alimentar/etiologia , Humanos , Camundongos , Proteínas de Plantas , Pólen
19.
J Exp Bot ; 62(3): 1001-15, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21062963

RESUMO

The wild grass Brachypodium distachyon has been proposed as an alternative model species for temperate cereals. The present paper reports on the characterization of B. distachyon grain, placing emphasis on endosperm cell walls. Brachypodium distachyon is notable for its high cell wall polysaccharide content that accounts for ∼52% (w/w) of the endosperm in comparison with 2-7% (w/w) in other cereals. Starch, the typical storage polysaccharide, is low [<10% (w/w)] in the endosperm where the main polysaccharide is (1-3) (1-4)-ß-glucan [40% (w/w) of the endosperm], which in all likelihood plays a role as a storage compound. In addition to (1-3) (1-4)-ß-glucan, endosperm cells contain cellulose and xylan in significant amounts. Interestingly, the ratio of ferulic acid to arabinoxylan is higher in B. distachyon grain than in other investigated cereals. Feruloylated arabinoxylan is mainly found in the middle lamella and cell junction zones of the storage endosperm, suggesting a potential role in cell-cell adhesion. The present results indicate that B. distachyon grains contain all the cell wall polysaccharides encountered in other cereal grains. Thus, due to its fully sequenced genome, its short life cycle, and the genetic tools available for mutagenesis/transformation, B. distachyon is a good model to investigate cell wall polysaccharide synthesis and function in cereal grains.


Assuntos
Brachypodium/anatomia & histologia , Parede Celular/ultraestrutura , Endosperma/anatomia & histologia , Brachypodium/genética , Brachypodium/metabolismo , Brachypodium/ultraestrutura , Parede Celular/genética , Parede Celular/metabolismo , Grão Comestível/anatomia & histologia , Grão Comestível/genética , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/metabolismo , Endosperma/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Polissacarídeos/metabolismo
20.
Food Chem ; 343: 128533, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33183874

RESUMO

Peptide marker identification is an important step in development of a mass spectrometry method for multiple allergen detection, since specificity, robustness and sensitivity of the overall analytical method will depend on the reliability of the proteotypic peptides. As part of the development of a multi-analyte reference method, discovery analysis of two incurred food matrices has been undertaken to select the most reliable peptide markers. Six allergenic ingredients (milk, egg, peanut, soybean, hazelnut, and almond) were incurred into either chocolate or broth powder matrix. Different conditions of protein extraction and purification were tested and the tryptic peptide pools were analysed by untargeted high resolution tandem mass spectrometry and the resulting fragmentation spectra were processed via a commercial software for sequence identification. The analysis performed on incurred foods provides both a prototype effective and straightforward sample preparation protocol and delivers reliable peptides to be included in a standardized selected reaction monitoring method.


Assuntos
Alérgenos/química , Chocolate/análise , Análise de Alimentos/métodos , Espectrometria de Massas em Tandem , Animais , Pós , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA