Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Anim Ecol ; 88(7): 1054-1065, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951204

RESUMO

The recovery of piscivorous birds around the world is touted as one of the great conservation successes of the 21st century, but for some species, this success was short-lived. Bald eagles, ospreys and great blue herons began repatriating Voyageurs National Park, USA, in the mid-20th century. However, after 1990, only eagles continued their recovery, while osprey and heron recovery failed for unknown reasons. We aimed to evaluate whether top-down effects of bald eagles and bottom-up effects of inclement weather, habitat quality and fish resources contributed to the failed recovery of ospreys and herons in a protected area. We quantified the relative influence of top-down and bottom-up factors on nest colonization, persistence (i.e., nest reuse) and success for ospreys, and occurrence and size of heronries using 26 years (1986-2012) of spatially explicit monitoring data coupled with multi-response hierarchical models and Bayesian variable selection approaches. Bald eagles were previously shown to recover faster due to intensive nest protection and management. Increased numbers of eagles were associated with a reduction in the numbers of osprey nests, their nesting success and heronry size, while higher local densities of nesting eagles deterred heronries nearby. We found little evidence of bottom-up limitations on the failed recovery of herons and ospreys. We present a conservation conundrum: bald eagles are top predators and a flagship species of conservation that have benefited from intensive protection, but this likely hindered the recovery of ospreys and herons. Returning top predators, or rewilding, is widely promoted as a conservation strategy for top-down ecosystem recovery, but managing top predators in isolation of jointly recovering species can halt or reverse ecosystem recovery. Previous studies warn of the potential consequences of ignoring biotic interactions amongst recovering species, but we go further by quantifying how these interactions contributed to failed recoveries via impacts on the nesting demography of jointly recovering species. Multi-species management is paramount to realizing the ecosystem benefits of top predator recovery.


Assuntos
Águias , Animais , Teorema de Bayes , Demografia , Ecossistema
2.
Glob Chang Biol ; 22(2): 613-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26390994

RESUMO

Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.


Assuntos
Ecossistema , Atividades Humanas , Qualidade da Água , Canadá , Carbono/análise , Clorofila/análise , Clorofila A , Humanos , Lagos , Nitratos/análise , Nitritos/análise , Fósforo/análise , Lagoas , Densidade Demográfica , Rios , Estados Unidos , Poluentes da Água/análise
3.
Ecol Appl ; 26(3): 873-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27411257

RESUMO

Lake Erie is a large lake straddling the border of the USA and Canada that has become increasingly eutrophic in recent years. Eutrophication is particularly focused in the shallow western basin. The western basin of Lake Erie is hydrodynamically similar to a large estuary, with riverine inputs from the Detroit and Maumee Rivers mixing together and creating gradients in chemical and physical conditions. This study was driven by two questions: (1) How does secondary production and food quality for consumers vary across this large mixing zone? and (2) Are there correlations between cyanobacterial abundance and secondary production or food quality for consumers? Measuring spatial and temporal variation in secondary production and food quality is difficult for a variety of logistical reasons, so here a common consumer approach was used. In a common consumer approach, individuals of a single species are raised under similar conditions until placed in the field across environmental gradients of interest. After some period of exposure, the response of that common consumer is measured to provide an index of spatial variation in conditions. Here, a freshwater mussel (Lampsilis siliquoidea) was deployed at 32 locations that spanned habitat types and a gradient in cyanobacterial abundance in the western basin of Lake Erie to measure spatial variation in growth (an index of secondary production) and fatty acid (FA) content (an index of food quality). We found secondary production was highest within the Maumee river mouth and lowest in the open waters of the lake. Mussel tissues in the Maumee river mouth also included more eicosapentaenoic and docosapentaenoic fatty acids (EPA and DPA, respectively), but fewer bacterial FAs, suggesting more algae at the base of the food web in the Maumee river mouth compared to open lake sites. The satellite-derived estimate of cyanobacterial abundance was not correlated to secondary production, but was positively related to EPA and DPA content in the mussels, suggesting more of these important FAs in locations with more cyanobacteria. These results suggest that growth of secondary consumers and the availability of important fatty acids in the western basin are centered on the Maumee river mouth.


Assuntos
Bivalves/fisiologia , Ecossistema , Lagos , Animais , Cianobactérias/fisiologia , Ácidos Graxos/química , Great Lakes Region , Lipídeos/química , Rios , Fatores de Tempo
4.
Ecotoxicology ; 23(8): 1555-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25134675

RESUMO

Mercury (Hg) contamination of fisheries is a major concern for resource managers of many temperate lakes. Anthropogenic Hg contamination is largely derived from atmospheric deposition within a lake's watershed, but its incorporation into the food web is facilitated by bacterial activity in sediments. Temporal variation in Hg content of fish (young-of-year yellow perch) in the regulated lakes of the Rainy-Namakan complex (on the border of the United States and Canada) has been linked to water level (WL) fluctuations, presumably through variation in sediment inundation. As a result, Hg contamination of fish has been linked to international regulations of WL fluctuation. Here we assess the relationship between WL fluctuations and fish Hg content using a 10-year dataset covering six lakes. Within-year WL rise did not appear in strongly supported models of fish Hg, but year-to-year variation in maximum water levels (∆maxWL) was positively associated with fish Hg content. This WL effect varied in magnitude among lakes: In Crane Lake, a 1 m increase in ∆maxWL from the previous year was associated with a 108 ng increase in fish Hg content (per gram wet weight), while the same WL change in Kabetogama was associated with only a 5 ng increase in fish Hg content. In half the lakes sampled here, effect sizes could not be distinguished from zero. Given the persistent and wide-ranging extent of Hg contamination and the large number of regulated waterways, future research is needed to identify the conditions in which WL fluctuations influence fish Hg content.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Percas , Poluentes Químicos da Água/análise , Animais , Canadá , Sedimentos Geológicos/química , Lagos/química , Compostos de Metilmercúrio/análise , Estados Unidos , Movimentos da Água
5.
Biogeochemistry ; 163(3): 245-263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155460

RESUMO

River-to-lake transitional areas are biogeochemically active ecosystems that can alter the amount and composition of dissolved organic matter (DOM) as it moves through the aquatic continuum. However, few studies have directly measured carbon processing and assessed the carbon budget of freshwater rivermouths. We compiled measurements of dissolved organic carbon (DOC) and DOM in several water column (light and dark) and sediment incubation experiments conducted in the mouth of the Fox river (Fox rivermouth) upstream from Green Bay, Lake Michigan. Despite variation in the direction of DOC fluxes from sediments, we found that the Fox rivermouth was a net sink of DOC where water column DOC mineralization outweighed the release of DOC from sediments at the rivermouth scale. Although we found DOM composition also changed during our experiments, alterations in DOM optical properties were largely independent of the direction of sediment DOC fluxes. We found a consistent decrease in humic-like and fulvic-like terrestrial DOM and a consistent increase in the overall microbial composition of rivermouth DOM during our incubations. Moreover, greater ambient total dissolved phosphorus concentrations were positively associated with the consumption of terrestrial humic-like, microbial protein-like, and more recently derived DOM but had no effect on bulk DOC in the water column. Unexplained variation indicates that other environmental controls and water column processes affect the processing of DOM in this rivermouth. Nonetheless, the Fox rivermouth appears capable of substantial DOM transformation with implications for the composition of DOM entering Lake Michigan. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-022-01000-z.

6.
Ecol Evol ; 12(12): e9557, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36523516

RESUMO

In North America, native unionid mussels are imperiled due to factors such as habitat degradation, pollution, and invasive species. One of the most substantial threats is that posed by dreissenid mussels, which are invasive mussels that attach to hard substrates including unionid shells and can restrict movement and feeding of unionids. This dreissenid mussel biofouling of unionids varies spatially in large ecosystems, such as the Great Lakes, with some areas having low enough biofouling to form effective refugia where unionid mussels might persist. Here, we measured biofouling on mussels suspended in cages over the growing season (generally first week in June to last week of August) over 3 years in nearshore areas in Lake Erie (2014-2016), Lake Michigan (Grand Traverse Bay, 2015 and Green Bay, 2016), and Lake Huron (2015). Biofouling varied substantially by years within Lake Erie, with increasingly higher biofouling rates each year. Although dreissenid mussels are present throughout these lakes, we observed very low biofouling in Grand Traverse Bay (Lake Michigan) and Saginaw Bay (Lake Huron), with no dreissenid mussels in 8 of 9 sites across these two bays. Sampling in the rivermouth of the Fox River (Wisconsin) and the Maumee River (Ohio) both showed very high biofouling in areas adjacent to the outlet of these tributaries into Green Bay and Maumee Bay (Lake Erie), respectively. These watersheds are dominated by agriculture, and we would expect high growth of primary producers (i.e., mussel food) and primary consumers (unionids and zebra mussels) in these areas compared to the other sampled bays or the open waters of the Great Lakes.

7.
Oecologia ; 162(4): 865-72, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19957090

RESUMO

Environmental effects on parents can strongly affect the phenotype of their offspring, which alters the heritability of traits and the offspring's responses to the environment. We examined whether P limitation of the aquatic invertebrate, Daphnia magna, alters the responses of its offspring to inadequate P nutrition. Mother Daphnia consuming P-poor algal food produced smaller neonates having lower body P content compared to control (P-rich) mothers. These offspring from P-stressed mothers, when fed P-rich food, grew faster and reproduced on the same schedule as those from P-sufficient mothers. In contrast, offspring from P-stressed mothers, when fed P-poor food, grew more slowly and had delayed reproduction compared to their sisters born to control mothers. There was also weak evidence that daughters from P-stressed mothers are more susceptible to infection by the virulent bacterium, Pasteuria ramosa. Our results show that P stress is not only transferred across generations, but also that its effect on the offspring generation varies depending upon the quality of their own environment. Maternal P nutrition can thus determine the nature of offspring responses to food P content and potentially obfuscates relationships between the performance of offspring and their own nutrition. Given that food quality can be highly variable within and among natural environments, our results demonstrate that maternal effects should be included as an additional dimension into studies of how elemental nutrition affects the physiology, ecology, and evolution of animal consumers.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Dieta/veterinária , Eucariotos/química , Fósforo na Dieta/farmacologia , Fenômenos Fisiológicos da Nutrição Animal/genética , Animais , Bacillales/patogenicidade , Bacillales/fisiologia , Daphnia/genética , Daphnia/microbiologia , Eucariotos/metabolismo , Feminino , Biologia Marinha , Fenótipo , Reprodução/efeitos dos fármacos , Reprodução/genética , Reprodução/fisiologia
8.
Ecol Evol ; 10(9): 3968-3976, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489624

RESUMO

Since the early 2000s, Lake Erie has been experiencing annual cyanobacterial blooms that often cover large portions of the western basin and even reach into the central basin. These blooms have affected several ecosystem services provided by Lake Erie to surrounding communities (notably drinking water quality). Several modeling efforts have identified the springtime total bioavailable phosphorus (TBP) load as a major driver of maximum cyanobacterial biomass in western Lake Erie, and on this basis, international water management bodies have set a phosphorus (P) reduction goal. This P reduction goal is intended to reduce maximum cyanobacterial biomass, but there has been very limited effort to identify the specific locations within the western basin of Lake Erie that will likely experience the most benefits. Here, we used pixel-specific linear regression to identify where annual variation in spring TBP loads is most strongly associated with cyanobacterial abundance, as inferred from satellite imagery. Using this approach, we find that annual TBP loads are most strongly associated with cyanobacterial abundance in the central and southern areas of the western basin. At the location of the Toledo water intake, the association between TBP load and cyanobacterial abundance is moderate, and in Maumee Bay (near Toledo, Ohio), the association between TBP and cyanobacterial abundance is no better than a null model. Both of these locations are important for the delivery of specific ecosystem services, but this analysis indicates that P load reductions would not be expected to substantially improve maximum annual cyanobacterial abundance in these locations. These results are preliminary in the sense that only a limited set of models were tested in this analysis, but these results illustrate the importance of identifying whether the spatial distribution of management benefits (in this case P load reduction) matches the spatial distribution of management goals (reducing the effects of cyanobacteria on important ecosystem services).

9.
Ecology ; 90(6): 1631-40, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19569377

RESUMO

In order to understand the environmental controls of the elemental composition of suspended particles in streams and rivers, we examined relationships between the stoichiometry of suspended particles and catchment characteristics (e.g., topography and land cover) under contrasting hydrological conditions in streams from the Upper Peninsula of Michigan, USA. Particulate C:N, N:P, and C:P ratios varied considerably among streams on each of 10 separate sampling dates and within most streams through time. When averaged across the study period by stream, particulate C:N:P ratios were strongly related to several catchment properties. For example, particulate C:P and N:P ratios were negatively related to the percentage of catchment used for agriculture but positively related to the percentage of catchment found as wetlands. These relationships reflected, in part, variable concentrations of mineral particles, which were strongly related to stream length, agriculture, and upstream lake area. In addition, the strength of the relationships between particulate elemental composition and catchment properties changed depending upon hydrologic condition of the Ontonagon watershed. For example, periods of wetness, as indicated by high river discharge, were found to increase the strength of seston C:N ratio-percentage of wetlands relationships but to reduce the strength of seston C:P ratios-percentage of wetlands relationships. Our results thus demonstrate that the balance of elements fluxing through forested streams is strongly affected by catchment properties but that these effects are sensitive to watershed discharge. At times of high discharge, there are strong connections to catchment sources while in-stream processes appear to predominate at time of low discharge.


Assuntos
Carbono/química , Ecossistema , Nitrogênio/química , Fósforo/química , Rios , Movimentos da Água , Michigan , Tempo
10.
PLoS One ; 14(12): e0225630, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31790462

RESUMO

Similarity in community composition declines as distance between locations increases, a phenomenon that has been observed in a wide variety of freshwater, marine and terrestrial ecosystems. One driver of the distance-similarity relationship is the presence of environmental gradients that alter the suitability of sites for particular species. Although some environmental gradients, such as geology, do not change on a year-to-year basis, others, such as temperature, vary annually and over longer time periods. Here, we used a 21-year dataset of fish communities in the upper Mississippi River to examine the effect of distance on variation in community composition and to assess whether the effect of distance is primarily due to its effect on thermal regime. Because the Mississippi River is aligned mostly north-to-south, larger distances along the river roughly correspond to larger differences in latitude and therefore thermal regime. As expected, there was a moderate distance-similarity relationship, suggesting greater distance leads to less similarity. The effect of distance appeared to increase slightly over time. Using a subset of data for which air temperature was available, we compared models that incorporated both difference among sites in degree days (a surrogate for thermal regime) and physical distance (river km). Although physical distance presumably incorporates more environmental gradients than just temperature (and other potential mechanisms), temperature alone appears to be more strongly associated with differences in the Mississippi River fish community than distance.


Assuntos
Migração Animal , Biota , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Peixes , Temperatura , Animais , Conjuntos de Dados como Assunto , Mississippi , Rios
11.
Aquat Toxicol ; 86(1): 99-103, 2008 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-18037510

RESUMO

Most chemical contaminants released into the aquatic environment have been tested for their toxicity to aquatic organisms using standardized test protocols. The extent that results from such toxicity tests vary with the quality of food provided to the test organism remains largely unknown. Here, we determined whether the elemental food quality consumed by a common test organism, Daphnia magna, affects the toxicity of a pharmaceutical, fluoxetine. We found strong interactive effects of food quality and fluoxetine on daphnid survival, growth, and reproduction. Specifically, we found that D. magna fed phosphorus (P)- and nitrogen (N)-rich algal food experienced greater toxicity due to fluoxetine. For example, the 6-day LC(50) values for fluoxetine decreased from 0.33 to 0.15 mg L(-1) when food C:P ratios were increased from 100 to 800. One explanation for this result is that fluoxetine, as a selective serotonin reuptake inhibitor, increases the activity of serotonin, whose production is linked to growth metabolism in D. magna. A regulatory role of serotonin for D. magna's growth and reproduction would be consistent with its mitogenic roles in other organisms, although this possibility would require further study. Nevertheless, these results demonstrate the need to consider elemental food quality in ecotoxicological testing protocols that are aimed at evaluating the risks of exposure to chemicals in the aquatic environment.


Assuntos
Ração Animal/normas , Daphnia/efeitos dos fármacos , Fluoxetina/toxicidade , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Poluentes Químicos da Água/toxicidade , Análise de Variância , Animais , Daphnia/crescimento & desenvolvimento , Eucariotos/química , Fluoxetina/análise , Análise de Alimentos , Dose Letal Mediana , Reprodução/efeitos dos fármacos , Análise de Sobrevida , Fatores de Tempo , Água/análise
12.
Sci Total Environ ; 404(2-3): 326-34, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18054999

RESUMO

Three categories of digital wetland maps widely available in the United States were used to develop models relating wetlands to DOC: (1) wetlands mapped by the U.S. National Wetlands Inventory (NWI) (2) wetland vegetation cover mapped by the U.S. National Land Cover Dataset (NLCD), and (3) maps of hydric soils. Data extracted from these maps for 27 headwater catchments of the Ontonagon River in northern Michigan, USA were used with DOC concentrations measured in catchment streams to develop stepwise multiple regressions based on wetland area and type. The catchments of the 27 tributaries ranged in area from 2 to 66 km(2) and wetlands constituted 10 to 53% of their area. Although all three databases provided regressions that were highly significant (p<0.001), the variance explained was greater for NWI maps (R(2)=0.75) than for NLCD (R(2)=0.61) or soil maps (R(2)=0.60). Wetland-stream relationships were strongest during September 2002, but were significant for nine out of ten dates sampled during subsequent seasons. The individual wetland type most highly correlated (r>0.62) with stream DOC concentrations was conifer peatland, represented on the NWI maps as Palustrine Needle-leaved Forest, the NLCD maps as woody wetland, and the soil maps as organic soils. For the NWI dataset, DOC was negatively correlated with area of palustrine emergent wetlands (i.e., sedge meadows and graminoid fens) and bog shrubs, inferring that these wetland types may be sinks for DOC. Because of the different effects of wetland vegetation types on DOC, a GIS data source such as the NWI which depicts those wetland types is superior for predicting landscape contributions to stream DOC concentrations.


Assuntos
Carbono/análise , Monitoramento Ambiental , Sistemas de Informação Geográfica , Compostos Orgânicos/análise , Rios/química , Poluentes Químicos da Água/análise , Áreas Alagadas , Carbono/química , Coleta de Dados , Michigan , Compostos Orgânicos/química , Análise de Regressão , Estações do Ano , Fatores de Tempo , Estados Unidos , Movimentos da Água , Poluentes Químicos da Água/química
13.
Environ Toxicol Chem ; 27(3): 676-81, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17967067

RESUMO

Ionic liquids (ILs) are nonvolatile organic salts that remain liquid over a wide range of temperatures. Ionic liquids are promoted as environmentally friendly alternatives to the volatile organic solvents that are currently in widespread industrial usage. Although ILs are unlikely to contribute to air pollution, their potential effects on aquatic ecosystems are largely unknown. Furthermore, information is lacking on how ILs will interact with common features of aquatic environments, such as dissolved organic matter (DOM). We assessed the effect of five IL-forming chemicals on the growth of duckweed, Lemna minor, a common aquatic vascular plant. In general, 1-alkyl-3-methylimidazolium chemicals with longer alkyl chains were more toxic to L. minor than those with short alkyl chain lengths. The concentration that produced a 50% reduction (the EC50) in root growth was 8.56 ppm when a butyl chain was present but was 0.25 ppm (i.e., much more toxic) when an octyl chain was substituted. Butyl-substituted 3-methylpyridinium (root growth EC50 of 7.49 ppm) and 3-methylimidazolium cations had similar toxicity, whereas a tetrabutyl ammonium cation was considerably less toxic (root growth EC50 of 32.71 ppm). When we tested whether DOM reduced the toxicity of these cations, we saw no effect of a low-molecular-weight organic acid or commercial humic matter. In contrast, natural DOM reduced the toxicity of imidazolium, but only at low concentrations. Design and use of ILs and other new chemicals should incorporate not only standard toxicity tests but also information on how such chemicals will interact with other components of aquatic ecosystems.


Assuntos
Araceae/efeitos dos fármacos , Líquidos Iônicos/toxicidade , Compostos Orgânicos/química , Poluentes Químicos da Água/toxicidade , Água/química , Araceae/crescimento & desenvolvimento , Líquidos Iônicos/química
14.
PLoS One ; 13(6): e0198612, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29879158

RESUMO

Water level (WL) fluctuations in lakes influence many aspects of ecosystem processes. Concern about the potential impact of WL fluctuations on fisheries was one of the factors that motivated the decision in 2000 to alter the management of WL in the Rainy-Namakan reservoir complex (on the border between the U.S. state of Minnesota and the Canadian province of Ontario). We used a Before-After, Control-Impact (BACI) framework to identify potential impacts of the change in WL management to Walleye, Northern Pike and Yellow Perch catch per unit effort (CPUE). The CPUE of these species from 1990-1999 and from 2005-2014 were compared in four impact lakes (Lake Kabetogama, Namakan Lake, Rainy Lake and Sand Point Lake) and two control lakes (Lake of the Woods and Lake Vermilion) using a simple Bayesian model. Changes in fish CPUE in the impact lakes were often similar to changes that occurred in at least one control lake. The only change that was not similar to changes in control lakes was an increase of Yellow Perch in Lake Kabetogama. The two control lakes often differed substantially from each other, such that if only one had been available our conclusions about the role of WL management on fisheries would be very different. In general, identifying cause-and-effect relationships in observational field data is very difficult, and the BACI analysis used here does not specify a causative mechanism, so co-occurring environmental and management changes may obscure the effect of WL management.


Assuntos
Esocidae , Pesqueiros/estatística & dados numéricos , Lagos , Percas , Movimentos da Água , Animais , Teorema de Bayes , Minnesota , Ontário
15.
Ecol Lett ; 9(7): 774-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16796566

RESUMO

Inadequate supply of one or more mineral elements can slow the growth of animal consumers and alter their physiology, life history and behaviour. A key concept for understanding nutrient deficiency in animals is the threshold elemental ratio (TER), at which growth limitation switches from one element to another. We used a stoichiometric model that coupled animal bioenergetics and body elemental composition to estimate TER of carbon and phosphorus (TER(C:P)) for 41 aquatic consumer taxa. We found a wide range in TER(C:P) (77-3086, ratio by atoms), which was generated by interspecific differences in body C : P ratios and gross growth efficiencies of C. TER(C:P) also varied among aquatic invertebrates having different feeding strategies, such that detritivores had significantly higher threshold ratios than grazers and predators. The higher TER(C:P) in detritivores resulted not only from lower gross growth efficiencies of carbon but also reflected lower body P content in these consumers. Supporting previous stoichiometric theory, we found TER(C:P) to be negatively correlated with the maximum growth rate of invertebrate consumers. By coupling bioenergetics and stoichiometry, this analysis revealed strong linkages among the physiology, ecology and evolution of nutritional demands for animal growth.


Assuntos
Carbono/metabolismo , Metabolismo Energético , Invertebrados/química , Invertebrados/fisiologia , Fósforo/metabolismo , Animais , Evolução Biológica , Classificação , Dieta , Ecologia , Ecossistema , Cadeia Alimentar , Estado Nutricional , Água
16.
Photochem Photobiol ; 82(3): 781-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16454579

RESUMO

We examined UV-B radiation flux and its environmental control within and among streams of northern Michigan. UV-B flux was estimated in streams by plastic dosimetry strips, which allow for the simultaneous and repeated in situ measurement of solar radiation. During the summer of 2004, UV-B flux was measured across depth gradients and along longitudinal transects in seven streams, which were chosen to encompass a range of dissolved organic carbon (DOC) concentrations and canopy cover. Attenuation coefficients of UV-B (K(d) (UV-B)) were estimated using plastic dosimeters placed along a depth gradient. K(d UV-B) were positively correlated with DOC concentration and similar to values obtained with laboratory and in situ spectrometry. Along 100 m longitudinal transects, UV-B flux varied along all streams regardless of their canopy cover and DOC concentration. Within-stream fluxes of UV-B were correlated to canopy cover in the only two streams that both had relatively low DOC concentration and variable canopy cover. Large differences were found among streams in the average UV-B flux (corrected for incident solar flux) reaching the dosimeters at 5 cm depth. These among-stream differences were largely accounted for by the stream width, canopy cover, and DOC concentration. Our results illustrate an inherent variability in UV-B flux within and among streams of northern Michigan that is strongly tied to the interactions of DOC concentration, stream size and riparian vegetation.


Assuntos
Exposição Ambiental/prevenção & controle , Rios , Raios Ultravioleta , Michigan , Árvores
17.
PLoS One ; 9(11): e112252, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25411848

RESUMO

Freshwater mussels are ecologically and economically important members of many aquatic ecosystems, but are globally among the most imperiled taxa. Propagation techniques for mussels have been developed and used to boost declining and restore extirpated populations. Here we use a cohort of propagated mussels to estimate the intrinsic variability in size and growth rate of Lampsilis siliquoidea (a commonly propagated species). Understanding the magnitude and pattern of variation in data is critical to determining whether effects observed in nature or experimental treatments are likely to be important. The coefficient of variation (CV) of L. siliquoidea soft tissues (6.0%) was less than the CV of linear shell dimensions (25.1-66.9%). Size-weight relationships were best when mussel width (the maximum left-right dimension with both valves appressed) was used as a predictor, but 95% credible intervals on these predictions for soft tissues were ∼145 mg wide (about 50% of the mean soft tissue mass). Mussels in this study were treated identically, raised from a single cohort and yet variation in soft tissue mass at a particular size class (as determined by shell dimensions) was still high. High variability in mussel size is often acknowledged, but seldom discussed in the context of mussel conservation. High variability will influence the survival of stocked juvenile cohorts, may affect the ability to experimentally detect sublethal stressors and may lead to incongruities between the effects that mussels have on structure (via hard shells) and biogeochemical cycles (via soft tissue metabolism). Given their imperiled status and longevity, there is often reluctance to destructively sample unionid mussel soft tissues even in metabolic studies (e.g., studies of nutrient cycling). High intrinsic variability suggests that using shell dimensions (particularly shell length) as a response variable in studies of sublethal stressors or metabolic processes will make confident identifications of smaller effect sizes difficult.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Bivalves/crescimento & desenvolvimento , Animais , Bivalves/fisiologia , Feminino , Água Doce , Tamanho do Órgão , Densidade Demográfica , Crescimento Demográfico , Estresse Fisiológico
18.
PLoS One ; 8(7): e69313, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935980

RESUMO

Terrestrial agricultural activities strongly influence riverine nitrogen (N) dynamics, which is reflected in the δ(15)N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ(15)N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ(15)N. In a previous study, this terrestrial-consumer tissue δ(15)N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the 'rivermouth effect'). This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ(15)N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients) will require integration of biogeochemical and hydrologic models.


Assuntos
Agricultura/métodos , Ecossistema , Nitrogênio/metabolismo , Rios/química , Animais , Teorema de Bayes , Bivalves/metabolismo , Canadá , Estuários , Geografia , Insetos/metabolismo , Lagos , Modelos Lineares , Michigan , Isótopos de Nitrogênio/metabolismo , Movimentos da Água , Áreas Alagadas
19.
PLoS One ; 8(8): e70666, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940619

RESUMO

Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.


Assuntos
Bivalves/metabolismo , Ecossistema , Ácidos Graxos/metabolismo , Insetos/metabolismo , Agricultura , Animais , Organismos Aquáticos/metabolismo , Clorofila/química , Clorofila A , Eutrofização , Cadeia Alimentar , Lagos , Metabolismo dos Lipídeos , Michigan , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA