Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biol Lett ; 13(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29021318

RESUMO

Phenotypic expression may be and often is influenced by an organism's developmental environment, referred to as phenotypic plasticity. The sperm cells of teleosts have been found to be inactive in the seminal plasma and are activated by osmotic shock for most fish species, through release in either hypertonic (for marine fish) or hypotonic (for freshwater fish) water. If this is the case, the regulatory system of sperm mobility should be reversed in salt- and freshwater fish. We tested this hypothesis by first activating sperm of salt- and freshwater populations of threespine stickleback in salt- and freshwater. The sperm from saltwater stickleback could be activated in either salinity, which matches the freshwater colonization history of the species, whereas the sperm from the freshwater population acted as predicted by the osmotic shock theory and was activated in freshwater only. As the freshwater population used here was calculated to be thousands of years old, we went on to test whether the trait(s) were plastic and sperm from freshwater males still could be activated in saltwater after individuals were exposed to saltwater. After raising freshwater stickleback in saltwater, we found the mature males to have active sperm in both saltwater and freshwater. Further, we also found the sperm of wild-caught freshwater stickleback to be active in saltwater after exposing those mature males to saltwater for only 2 days. This illustrates that the ability for stickleback sperm to be activated in a range of water qualities is an environmentally induced plastic trait.


Assuntos
Adaptação Fisiológica , Salinidade , Smegmamorpha/fisiologia , Motilidade dos Espermatozoides/fisiologia , Animais , Ecossistema , Água Doce , Masculino , Pressão Osmótica/fisiologia , Fenótipo , Água do Mar , Smegmamorpha/genética
2.
Mol Ecol ; 24(1): 180-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25407440

RESUMO

A common challenge in phylogenetic reconstruction is to find enough suitable genomic markers to reliably trace splitting events with short internodes. Here, we present phylogenetic analyses based on genomewide single-nucleotide polymorphisms (SNPs) of an enigmatic avian radiation, the subspecies complex of Afrocanarian blue tits (Cyanistes teneriffae). The two sister species, the Eurasian blue tit (Cyanistes caeruleus) and the azure tit (Cyanistes cyanus), constituted the out-group. We generated a large data set of SNPs for analysis of population structure and phylogeny. We also adapted our protocol to utilize degraded DNA from old museum skins from Libya. We found strong population structuring that largely confirmed subspecies monophyly and constructed a coalescent-based phylogeny with full support at all major nodes. The results are consistent with a recent hypothesis that La Palma and Libya are relic populations of an ancient Afrocanarian blue tit, although a small data set for Libya could not resolve its position relative to La Palma. The birds on the eastern islands of Fuerteventura and Lanzarote are similar to those in Morocco. Together they constitute the sister group to the clade containing the other Canary Islands (except La Palma), in which El Hierro is sister to the three central islands. Hence, extant Canary Islands populations seem to originate from multiple independent colonization events. We also found population divergences in a key reproductive trait, viz. sperm length, which may constitute reproductive barriers between certain populations. We recommend a taxonomic revision of this polytypic species, where several subspecies should qualify for species rank.


Assuntos
Evolução Biológica , Passeriformes/classificação , Filogenia , Polimorfismo de Nucleotídeo Único , África do Norte , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Genética Populacional , Líbia , Masculino , Passeriformes/genética , Espanha , Espermatozoides/citologia
3.
Proc Biol Sci ; 280(1753): 20122616, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23282997

RESUMO

Spermatozoa exhibit considerable interspecific variability in size and shape. Our understanding of the adaptive significance of this diversity, however, remains limited. Determining how variation in sperm structure translates into variation in sperm performance will contribute to our understanding of the evolutionary diversification of sperm form. Here, using data from passerine birds, we test the hypothesis that longer sperm swim faster because they have more available energy. We found that sperm with longer midpieces have higher levels of intracellular adenosine triphosphate (ATP), but that greater energy reserves do not translate into faster-swimming sperm. Additionally, we found that interspecific variation in sperm ATP concentration is not associated with the level of sperm competition faced by males. Finally, using Bayesian methods, we compared the evolutionary trajectories of sperm morphology and ATP content, and show that both traits have undergone directional evolutionary change. However, in contrast to recent suggestions in other taxa, we show that changes in ATP are unlikely to have preceded changes in morphology in passerine sperm. These results suggest that variable selective pressures are likely to have driven the evolution of sperm traits in different taxa, and highlight fundamental biological differences between taxa with internal and external fertilization, as well as those with and without sperm storage.


Assuntos
Trifosfato de Adenosina/metabolismo , Evolução Biológica , Mitocôndrias/metabolismo , Aves Canoras/fisiologia , Espermatozoides/citologia , Espermatozoides/fisiologia , Animais , Teorema de Bayes , Medições Luminescentes , Masculino , Modelos Biológicos , Noruega , Aves Canoras/genética , Especificidade da Espécie , Motilidade dos Espermatozoides
4.
Proc Biol Sci ; 280(1752): 20122434, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23235706

RESUMO

Sperm competition represents an important component of post-copulatory sexual selection. It has been argued that the level of sperm competition declines in birds towards the equator. However, to date, sperm competition estimates have been available mainly for avian species inhabiting the northern temperate zone. Here we apply a novel approach, using the coefficient of between-male variation (CV(bm)) in sperm size as an index for sperm competition risk, in a comparative analysis of 31 Afrotropical and 99 northern temperate zone passerine species. We found no difference in sperm competition risk between the two groups, nor any relationship with migration distance. However, a multivariate model indicated that sperm competition risk was highest in species with a combination of low body mass and few eggs per clutch. The effect of clutch size was most pronounced in tropical species, which indicates that sperm competition risk in tropical and temperate species is differently associated with particular life-history traits. Although tropical species had lower sperm competition risk than temperate zone species for overlapping clutch sizes, the idea of a generally reduced risk of sperm competition in tropical birds was not supported by our analysis.


Assuntos
Ecossistema , Passeriformes/fisiologia , Comportamento Sexual Animal , Espermatozoides/fisiologia , Migração Animal , Animais , Tamanho Corporal , Tamanho da Ninhada , Feminino , Masculino , Análise Multivariada , Estações do Ano
5.
Biol Lett ; 9(5): 20130530, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24088561

RESUMO

Interspecific variation in sperm size is enigmatic, but generally assumed to reflect species-specific trade-offs in selection pressures. Among passerine birds, sperm length varies sevenfold, and sperm competition risk seems to drive the evolution of longer sperm. However, little is known about factors favouring short sperm or constraining the evolution of longer sperm. Here, we report a comparative analysis of sperm head abnormalities among 11 species of passerine bird in Chernobyl, presumably resulting from chronic irradiation following the 1986 accident. Frequencies of sperm abnormalities varied between 15.7 and 77.3% among species, more than fourfold higher than in uncontaminated areas. Nonetheless, species ranked similarly in sperm abnormalities in unpolluted areas as in Chernobyl, pointing to intrinsic factors underlying variation in sperm damage among species. Scanning electron microscopy of abnormal spermatozoa revealed patterns of acrosome damage consistent with premature acrosome reaction. Sperm length, but not sperm competition risk explained variation in sperm damage among species. This suggests that longer spermatozoa are more susceptible to premature acrosome reaction. Therefore, we hypothesize a trade-off between sperm length and sperm integrity affecting sperm evolution in passerine birds.


Assuntos
Evolução Biológica , Acidente Nuclear de Chernobyl , Passeriformes/fisiologia , Cabeça do Espermatozoide/efeitos da radiação , Espermatozoides/anormalidades , Espermatozoides/citologia , Animais , Tamanho Celular , Masculino , Microscopia Eletrônica de Varredura , Especificidade da Espécie , Cabeça do Espermatozoide/ultraestrutura , Espermatozoides/efeitos da radiação , Espermatozoides/ultraestrutura
6.
Behav Ecol Sociobiol ; 76(5): 61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535127

RESUMO

Abstract: In birds with extrapair mating, older males usually have higher fertilization success than younger males. Two hypotheses can potentially explain this pattern: 1) females prefer older, and often more ornamented males, or 2) older males invest more in reproduction and fertility than younger males. Here we studied factors associated with age-related male fertilization success in a population of barn swallows Hirundo rustica in Canada. We document that male fertilization success increased gradually up to a minimum age of four-year old. The age effect was especially strong for the number of extrapair offspring obtained and the occurrence of a second brood. The higher fertilization success of older males was also associated with an early start of breeding in spring. The length of the elongated outermost tail feathers, a postulated male ornament preferred by females, also increased with age (in both sexes), but it was not a significant predictor of male fertilization success within age classes. Male fertility traits, especially testis size, but also sperm motility and sperm velocity, increased significantly across age groups. Our results suggest that the higher fertilization success by older males is due to their higher reproductive investments and that their longer tails are an adaptation to early arrival on the breeding grounds. Significance statement: The barn swallow is a socially monogamous passerine with extensive extrapair mating. We found that males become more successful in siring both withinpair and extrapair offspring as they become older. Their increased fertilization success was associated with a higher reproductive effort as indicated by larger testes, more motile sperm, and an earlier start of breeding in spring. The length of the outer tail feathers increased with age in both sexes, but long tails did not enhance male fertilization success among males of the same age. Long tails are probably an adaptation to rapid migration and earlier arrival on the breeding grounds. Our findings suggest that the commonly observed age-related increase in male fertilization success in passerine birds is better explained by life history theory than by sexual selection theory. Supplementary Information: The online version contains supplementary material available at 10.1007/s00265-022-03170-0.

7.
Cells ; 10(6)2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073133

RESUMO

Sperm swimming performance affects male fertilization success, particularly in species with high sperm competition. Understanding how sperm morphology impacts swimming performance is therefore important. Sperm swimming speed is hypothesized to increase with total sperm length, relative flagellum length (with the flagellum generating forward thrust), and relative midpiece length (as the midpiece contains the mitochondria). We tested these hypotheses and tested for divergence in sperm traits in five island populations of Canary Islands chiffchaff (Phylloscopus canariensis). We confirmed incipient mitochondrial DNA differentiation between Gran Canaria and the other islands. Sperm swimming speed correlated negatively with total sperm length, did not correlate with relative flagellum length, and correlated negatively with relative midpiece length (for Gran Canaria only). The proportion of motile cells increased with relative flagellum length on Gran Canaria only. Sperm morphology was similar across islands. We thus add to a growing number of studies on passerine birds that do not support sperm morphology-swimming speed hypotheses. We suggest that the swimming mechanics of passerine sperm are sufficiently different from mammalian sperm that predictions from mammalian hydrodynamic models should no longer be applied for this taxon. While both sperm morphology and sperm swimming speed are likely under selection in passerines, the relationship between them requires further elucidation.


Assuntos
Passeriformes/metabolismo , Fenótipo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/citologia , Animais , Masculino , Mamíferos/metabolismo , Passeriformes/anatomia & histologia , Filogenia , Espanha
8.
Evolution ; 62(2): 494-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18070085

RESUMO

Spermatozoa are among the most diversified cells in the animal kingdom, but the underlying evolutionary forces affecting intraspecific variation in sperm morphology are poorly understood. It has been hypothesized that sperm competition is a potent selection pressure on sperm variation within species. Here, we examine intraspecific variation in total sperm length of 22 wild passerine bird species (21 genera, 11 families) in relation to the risk of sperm competition, as expressed by the frequency of extrapair paternity and relative testis size. We demonstrate, by using phylogenetic comparative methods, that between-male variation in sperm length within species is closely and negatively linked to the risk of sperm competition. This relationship was even stronger when only considering species in which data on sperm length and extrapair paternity originated from the same populations. Intramale variation in sperm length within species was also negatively, although nonsignificantly, related to sperm competition risk. Our findings suggest that postcopulatory sexual selection is a powerful evolutionary force reducing the intraspecific phenotypic variation in sperm-size traits, potentially driving the diversification of sperm morphology across populations and species.


Assuntos
Comportamento Competitivo , Variação Genética , Passeriformes/genética , Passeriformes/fisiologia , Comportamento Sexual Animal , Espermatozoides/fisiologia , Animais , Evolução Biológica , Evolução Molecular , Feminino , Fertilização , Masculino , Preferência de Acasalamento Animal , Seleção Genética , Especificidade da Espécie
9.
Ecol Evol ; 6(5): 1363-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26855769

RESUMO

Divergent sexual selection within allopatric populations may result in divergent sexual phenotypes, which can act as reproductive barriers between populations upon secondary contact. This hypothesis has been most tested on traits involved in precopulatory sexual selection, with less work focusing on traits that act after copulation and before fertilization (i.e., postcopulatory prezygotic traits), particularly in internally fertilizing vertebrates. However, postcopulatory sexual selection within species can also drive trait divergence, resulting in reduced performance of heterospecific sperm within the female reproductive tract. Such incompatibilities, arising as a by-product of divergent postcopulatory sexual selection in allopatry, can represent reproductive barriers, analogous to species-assortative mating preferences. Here, we tested for postcopulatory prezygotic reproductive barriers between three pairs of taxa with diverged sperm phenotypes and moderate-to-high opportunity for postcopulatory sexual selection (barn swallows Hirundo rustica versus sand martins Riparia riparia, two subspecies of bluethroats, Luscinia svecica svecica versus L. s. namnetum, and great tits Parus major versus blue tits Cyanistes caeruleus). We tested sperm swimming performance in fluid from the outer reproductive tract of females, because the greatest reduction in sperm number in birds occurs as sperm swim across the vagina. Contrary to our expectations, sperm swam equally well in fluid from conspecific and heterospecific females, suggesting that postcopulatory prezygotic barriers do not act between these taxon pairs, at this stage between copulation and fertilization. We therefore suggest that divergence in sperm phenotypes in allopatry is insufficient to cause widespread postcopulatory prezygotic barriers in the form of impaired sperm swimming performance in passerine birds.

10.
J Morphol ; 276(4): 370-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25427840

RESUMO

Sperm performance is likely to be an important determinant of male reproductive success, especially when females copulate with multiple males. Understanding sperm performance is therefore crucial to fully understand the evolution of male reproductive strategies. In this study, we examined the repeatability of sperm morphology and motility measures over three breeding seasons, and we studied relationships between sperm morphology and function. We conducted this study in wild-derived captive house sparrows (Passer domesticus) and Spanish sparrows (P. hispaniolensis). Results for the two species were similar. As predicted from results in other passerine species, total sperm length was highly repeatable across ejaculates, and repeatability for the length of other components was moderate. The repeatability of sperm swimming speed across ejaculates was lower, but statistically significant, suggesting that sperm velocity may be a relatively dynamic trait. Surprisingly, swimming speed did not correlate with the relative length of the midpiece, and it correlated negatively with the relative length of the flagellum and with total sperm length. This pattern is the opposite of what theory predicts and differs from what has been found in house sparrows before. Also contrary to previous work, we found no evidence that total sperm length correlates with sperm longevity. These results therefore highlight the need for a better understanding of relationships between sperm morphology and function in passerine birds.


Assuntos
Pardais/anatomia & histologia , Pardais/fisiologia , Espermatozoides/citologia , Espermatozoides/fisiologia , Animais , Feminino , Masculino
11.
Evolution ; 69(4): 1044-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655075

RESUMO

Rapid diversification of sexual traits is frequently attributed to sexual selection, though explicit tests of this hypothesis remain limited. Spermatozoa exhibit remarkable variability in size and shape, and studies report a correlation between sperm morphology (sperm length and shape) and sperm competition risk or female reproductive tract morphology. However, whether postcopulatory processes (e.g., sperm competition and cryptic female choice) influence the speed of evolutionary diversification in sperm form is unknown. Using passerine birds, we quantified evolutionary rates of sperm length divergence among lineages (i.e., species pairs) and determined whether these rates varied with the level of sperm competition (estimated as relative testes mass). We found that relative testes mass was significantly and positively associated with more rapid phenotypic divergence in sperm midpiece and flagellum lengths, as well as total sperm length. In contrast, there was no association between relative testes mass and rates of evolutionary divergence in sperm head size, and models suggested that head length is evolutionarily constrained. Our results are the first to show an association between the strength of sperm competition and the speed of sperm evolution, and suggest that postcopulatory sexual selection promotes rapid evolutionary diversification of sperm morphology.


Assuntos
Evolução Biológica , Passeriformes/anatomia & histologia , Seleção Genética , Espermatozoides/citologia , Animais , Masculino , Modelos Genéticos , Tamanho do Órgão , Passeriformes/genética , Fenótipo , Filogenia , Testículo/anatomia & histologia
12.
PLoS One ; 9(5): e95252, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788148

RESUMO

Local adaptation is an important process contributing to population differentiation which can occur in continuous or isolated populations connected by various amounts of gene flow. The willow warbler (Phylloscopus trochilus) is one of the most common songbirds in Fennoscandia. It has a continuous breeding distribution where it is found in all forested habitats from sea level to the tree line and therefore constitutes an ideal species for the study of locally adapted genes associated with environmental gradients. Previous studies in this species identified a genetic marker (AFLP-WW1) that showed a steep north-south cline in central Sweden with one allele associated with coastal lowland habitats and the other with mountainous habitats. It was further demonstrated that this marker is embedded in a highly differentiated chromosome region that spans several megabases. In the present study, we sampled 2,355 individuals at 128 sites across all of Fennoscandia to study the geographic and climatic variables associated with the allele frequency distributions of WW1. Our results demonstrate that 1) allele frequency patterns significantly differ between mountain and lowland populations, 2) these allele differences coincide with extreme temperature conditions and the short growing season in the mountains, and milder conditions in coastal areas, and 3) the northern-allele or "altitude variant" of WW1 occurs in willow warblers that occupy mountainous habitat regardless of subspecies. Finally these results suggest that climate may exert selection on the genomic region associated with these alleles and would allow us to develop testable predictions for the distribution of the genetic marker based on climate change scenarios.


Assuntos
Alelos , Clima , Variação Genética , Genoma de Planta , Salix/genética , Ecossistema , Interação Gene-Ambiente , Geografia , Modelos Teóricos
13.
PLoS One ; 7(2): e32611, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384277

RESUMO

There is growing evidence that post-copulatory sexual selection, mediated by sperm competition, influences the evolution of sperm phenotypes. Evidence for pre-copulatory sexual selection effects on sperm traits, on the other hand, is rather scarce. A recent paper on the pied flycatcher, Ficedula hypoleuca, reported phenotypic associations between sperm length and two sexually selected male traits, i.e. plumage colour and arrival date, thus invoking pre-copulatory sexual selection for longer sperm. We were unable to replicate these associations with a larger data set from the same and two additional study populations; sperm length was not significantly related to either male plumage colour or arrival date. Furthermore, there was no significant difference in sperm length between populations despite marked differences in male plumage colour. We also found some evidence against the previously held assumption of longer sperm being qualitatively superior; longer sperm swam at the same speed as shorter sperm, but were less able to maintain speed over time. We argue that both empirical evidence and theoretical considerations suggest that the evolution of sperm morphology is not primarily associated with pre-copulatory sexual selection on male secondary sexual traits in this or other passerine bird species. The relatively large between-male variation in sperm length in this species is probably due to relaxed post-copulatory sexual selection.


Assuntos
Preferência de Acasalamento Animal , Comportamento Sexual Animal , Espermatozoides/fisiologia , Animais , Biodiversidade , Evolução Biológica , Feminino , Masculino , Modelos Biológicos , Modelos Estatísticos , Passeriformes/genética , Fenótipo , Seleção Genética , Motilidade dos Espermatozoides
14.
Ecol Evol ; 2(12): 2974-88, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23301165

RESUMO

Mitochondrial DNA usually shows low sequence variation within and high sequence divergence among species, which makes it a useful marker for phylogenetic inference and DNA barcoding. A previous study on the common redstart (Phoenicurus phoenicurus) revealed two very different mtDNA haplogroups (5% K2P distance). This divergence is comparable to that among many sister species; however, both haplogroups coexist and interbreed in Europe today. Herein, we describe the phylogeographic pattern of these lineages and test hypotheses for how such high diversity in mtDNA has evolved. We found no evidence for mitochondrial pseudogenes confirming that both haplotypes are of mitochondrial origin. When testing for possible reproductive barriers, we found no evidence for lineage-specific assortative mating and no difference in sperm morphology, indicating that they are not examples of cryptic species, nor likely to reflect the early stages of speciation. A gene tree based on a short fragment of cytochrome c oxidase subunit 1 from the common redstart and 10 other Phoenicurus species, showed no introgression from any of the extant congenerics. However, introgression from an extinct congeneric cannot be excluded. Sequences from two nuclear introns did not show a similar differentiation into two distinct groups. Mismatch distributions indicated that the lineages have undergone similar demographic changes. Taken together, these results confirm that deeply divergent mitochondrial lineages can coexist in biological species. Sympatric mtDNA divergences are relatively rare in birds, but the fact that they occur argues against the use of threshold mtDNA divergences in species delineation.

15.
PLoS One ; 5(10): e13456, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20976147

RESUMO

BACKGROUND: The rate of extrapair paternity is a commonly used index for the risk of sperm competition in birds, but paternity data exist for only a few percent of the approximately 10400 extant species. As paternity analyses require extensive field sampling and costly lab work, species coverage in this field will probably not improve much in the foreseeable future. Recent findings from passerine birds, which constitute the largest avian order (∼5,900 species), suggest that sperm phenotypes carry a signature of sperm competition. Here we examine how well standardized measures of sperm length variation can predict the rate of extrapair paternity in passerine birds. METHODOLOGY/PRINCIPAL FINDINGS: We collected sperm samples from 55 passerine species in Canada and Europe for which extrapair paternity rates were already available from either the same (n = 24) or a different (n = 31) study population. We measured the total length of individual spermatozoa and found that both the coefficient of between-male variation (CV(bm)) and within-male variation (CV(wm)) in sperm length were strong predictors of the rate of extrapair paternity, explaining as much as 65% and 58%, respectively, of the variation in extrapair paternity among species. However, only the CV(bm) predictor was independent of phylogeny, which implies that it can readily be converted into a currency of extrapair paternity without the need for phylogenetic correction. CONCLUSION/SIGNIFICANCE: We propose the CV(bm) index as an alternative measure to extrapair paternity for passerine birds. Given the ease of sperm extraction from male birds in breeding condition, and a modest number of sampled males required for a robust estimate, this new index holds a great potential for mapping the risk of sperm competition across a wide range of passerine birds.


Assuntos
Paternidade , Espermatozoides , Animais , Masculino , Passeriformes , Comportamento Sexual Animal
16.
Evolution ; 63(9): 2466-73, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19453726

RESUMO

Sperm swimming speed is an important determinant of male fertility and sperm competitiveness. Despite its fundamental biological importance, the underlying evolutionary processes affecting this male reproductive trait are poorly understood. Using a comparative approach in a phylogenetic framework, we tested the predictions that sperm swim faster with (1) increased risk of sperm competition, (2) shorter duration of female sperm storage, and (3) increased sperm length. We recorded sperm swimming speed in 42 North American and European free-living passerine bird species, representing 35 genera and 16 families. We found that sperm swimming speed was positively related to the frequency of extrapair paternity (a proxy for the risk of sperm competition) and negatively associated with clutch size (a proxy for the duration of female sperm storage). Sperm swimming speed was unrelated to sperm length, although sperm length also increased with the frequency of extrapair paternity. These results suggest that sperm swimming speed and sperm length are not closely associated traits and evolve independently in response to sperm competition in passerine birds. Our findings emphasize the significance of both sperm competition and female sperm storage duration as evolutionary forces driving sperm swimming speed.


Assuntos
Evolução Biológica , Aves/fisiologia , Fertilização/fisiologia , Comportamento Sexual Animal/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Animais , Aves/classificação , Aves/genética , Feminino , Masculino , Filogenia , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA