Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Immunity ; 47(3): 566-581.e9, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930663

RESUMO

Microglia play a pivotal role in the maintenance of brain homeostasis but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Alzheimer's disease (AD) and in microglia surrounding neuritic ß-amyloid (Aß)-plaques in the brains of people with AD. The APOE pathway mediated a switch from a homeostatic to a neurodegenerative microglia phenotype after phagocytosis of apoptotic neurons. TREM2 (triggering receptor expressed on myeloid cells 2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia had lost their tolerogenic function. Our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target that could aid in the restoration of homeostatic microglia.


Assuntos
Apolipoproteínas E/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Transcriptoma , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apoptose/genética , Apoptose/imunologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Análise por Conglomerados , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcação de Genes , Humanos , Tolerância Imunológica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Doenças Neurodegenerativas/imunologia , Neurônios/metabolismo , Fagocitose/genética , Fagocitose/imunologia , Fenótipo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Ann Neurol ; 96(1): 1-20, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38568026

RESUMO

Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.


Assuntos
Biomarcadores , Progressão da Doença , Esclerose Múltipla , Humanos , Biomarcadores/metabolismo , Esclerose Múltipla/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Recidiva
3.
J Neuroinflammation ; 21(1): 34, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279130

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease characterized by motor deficits and cognitive decline. Many immune aspects of the disease are understood through studies in the experimental autoimmune encephalomyelitis (EAE) model, including the contribution of the NF-κB transcription factor to neuroinflammation. However, the cell-specific roles of NF-κB to EAE and its cognitive comorbidities still needs further investigation. We have previously shown that the myeloid cell NF-κB plays a role in the healthy brain by exerting homeostatic regulation of neuronal excitability and synaptic plasticity and here we investigated its role in EAE. METHODS: We used constitutive MφIKKßΚΟ mice, in which depletion of IKKß, the main activating kinase of NF-κB, was global to CNS and peripheral macrophages, and ΜgΙΚΚßKO mice, in which depletion was inducible and specific to CNS macrophages by 28 days after tamoxifen administration. We subjected these mice to MOG35-55 induced EAE and cuprizone-induced demyelination. We measured pathology by immunohistochemistry, investigated molecular mechanisms by RNA sequencing analysis and studied neuronal functions by in vivo electrophysiology in awake animals. RESULTS: Global depletion of IKKß from myeloid cells in MφIKKßΚΟ mice accelerated the onset and significantly supressed chronic EAE. Knocking out IKKß only from CNS resident macrophages accelerated the onset and exacerbated chronic EAE, accompanied by earlier demyelination and immune cell infiltration but had no effect in cuprizone-induced demyelination. Peripheral T cell effector functions were not affected by myeloid cell deletion of IKKß, but CNS resident mechanisms, such as microglial activation and neuronal hyperexcitability were altered from early in EAE. Lastly, depletion of myeloid cell IKKß resulted in enhanced late long-term potentiation in EAE. CONCLUSIONS: IKKß-mediated activation of NF-κΒ in myeloid cells has opposing roles in EAE depending on the cell type and the disease stage. In CNS macrophages it is protective while in peripheral macrophages it is disease-promoting and acts mainly during chronic disease. Although clinically protective, CNS myeloid cell IKKß deletion dysregulates neuronal excitability and synaptic plasticity in EAE. These effects of IKKß on brain cognitive abilities deserve special consideration when therapeutic interventions that inhibit NF-κB are used in MS.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Encefalomielite Autoimune Experimental/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Cuprizona , Macrófagos/metabolismo , Gravidade do Paciente , Camundongos Endogâmicos C57BL , Microglia/metabolismo
4.
Acta Neuropathol ; 147(1): 31, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310187

RESUMO

Anti-glial fibrillary acidic protein (GFAP) meningoencephalomyelitis (autoimmune GFAP astrocytopathy) is a new autoimmune central nervous system (CNS) disease diagnosable by the presence of anti-GFAP autoantibodies in the cerebrospinal fluid and presents as meningoencephalomyelitis in the majority of patients. Only few neuropathological reports are available and little is known about the pathogenic mechanisms. We performed a histopathological study of two autopsies and nine CNS biopsies of patients with anti-GFAP autoantibodies and found predominantly a lymphocytic and in one autopsy case a granulomatous inflammatory phenotype. Inflammatory infiltrates were composed of B and T cells, including tissue-resident memory T cells. Although obvious astrocytic damage was absent in the GFAP-staining, we found cytotoxic T cell-mediated reactions reflected by the presence of CD8+/perforin+/granzyme A/B+ cells, polarized towards astrocytes. MHC-class-I was upregulated in reactive astrocytes of all biopsies and two autopsies but not in healthy controls. Importantly, we observed a prominent immunoreactivity of astrocytes with the complement factor C4d. Finally, we provided insight into an early phase of GFAP autoimmunity in an autopsy of a pug dog encephalitis that was characterized by marked meningoencephalitis with selective astrocytic damage with loss of GFAP and AQP4 in the lesions.Our histopathological findings indicate that a cytotoxic T cell-mediated immune reaction is present in GFAP autoimmunity. Complement C4d deposition on astrocytes could either represent the cause or consequence of astrocytic reactivity. Selective astrocytic damage is prominent in the early phase of GFAP autoimmunity in a canine autopsy case, but mild or absent in subacute and chronic stages in human disease, probably due to the high regeneration potential of astrocytes. The lymphocytic and granulomatous phenotypes might reflect different stages of lesion development or patient-specific modifications of the immune response. Future studies will be necessary to investigate possible implications of pathological subtypes for clinical disease course and therapeutic strategies.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalomielite , Meningoencefalite , Humanos , Animais , Cães , Proteína Glial Fibrilar Ácida/metabolismo , Encefalomielite/patologia , Astrócitos/patologia , Doenças Autoimunes do Sistema Nervoso/líquido cefalorraquidiano , Doenças Autoimunes do Sistema Nervoso/terapia , Meningoencefalite/líquido cefalorraquidiano , Meningoencefalite/patologia , Autoanticorpos
5.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479997

RESUMO

Neuroinflammation is a pathophysiological hallmark of multiple sclerosis and has a close mechanistic link to neurodegeneration. Although this link is potentially targetable, robust translatable models to reliably quantify and track neuroinflammation in both mice and humans are lacking. The choroid plexus (ChP) plays a pivotal role in regulating the trafficking of immune cells from the brain parenchyma into the cerebrospinal fluid (CSF) and has recently attracted attention as a key structure in the initiation of inflammatory brain responses. In a translational framework, we here address the integrity and multidimensional characteristics of the ChP under inflammatory conditions and question whether ChP volumes could act as an interspecies marker of neuroinflammation that closely interrelates with functional impairment. Therefore, we explore ChP characteristics in neuroinflammation in patients with multiple sclerosis and in two experimental mouse models, cuprizone diet-related demyelination and experimental autoimmune encephalomyelitis. We demonstrate that ChP enlargement-reconstructed from MRI-is highly associated with acute disease activity, both in the studied mouse models and in humans. A close dependency of ChP integrity and molecular signatures of neuroinflammation is shown in the performed transcriptomic analyses. Moreover, pharmacological modulation of the blood-CSF barrier with natalizumab prevents an increase of the ChP volume. ChP enlargement is strongly linked to emerging functional impairment as depicted in the mouse models and in multiple sclerosis patients. Our findings identify ChP characteristics as robust and translatable hallmarks of acute and ongoing neuroinflammatory activity in mice and humans that could serve as a promising interspecies marker for translational and reverse-translational approaches.


Assuntos
Plexo Corióideo/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Doenças Neuroinflamatórias/diagnóstico por imagem , Adulto , Animais , Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Plexo Corióideo/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/diagnóstico por imagem , Proteômica/métodos
6.
Neuropathol Appl Neurobiol ; 49(1): e12851, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36181265

RESUMO

AIMS: Axonal injury in multiple sclerosis (MS) and experimental models is most frequently detected in acutely demyelinating lesions. We recently reported a compensatory neuronal response, where mitochondria move to the acutely demyelinated axon and increase the mitochondrial content following lysolecithin-induced demyelination. We termed this homeostatic phenomenon, which is also evident in MS, the axonal response of mitochondria to demyelination (ARMD). The aim of this study is to determine whether ARMD is consistently evident in experimental demyelination and how its perturbation relates to axonal injury. METHODS: In the present study, we assessed axonal mitochondrial content as well as axonal mitochondrial respiratory chain complex IV activity (cytochrome c oxidase or COX) of axons and related these to axonal injury in nine different experimental disease models. We used immunofluorescent histochemistry as well as sequential COX histochemistry followed by immunofluorescent labelling of mitochondria and axons. RESULTS: We found ARMD a consistent and robust phenomenon in all experimental disease models. The increase in mitochondrial content within demyelinated axons, however, was not always accompanied by a proportionate increase in complex IV activity, particularly in highly inflammatory models such as experimental autoimmune encephalomyelitis (EAE). Axonal complex IV activity inversely correlated with the extent of axonal injury in experimental disease models. CONCLUSIONS: Our findings indicate that ARMD is a consistent and prominent feature and emphasise the importance of complex IV activity in the context of ARMD, especially in autoimmune inflammatory demyelination, paving the way for the development of novel neuroprotective therapies.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Esclerose Múltipla/patologia , Axônios/patologia , Encefalomielite Autoimune Experimental/patologia , Neurônios/patologia , Mitocôndrias/patologia
7.
Mult Scler ; 29(3): 374-384, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36537667

RESUMO

BACKGROUND: Paramagnetic rim lesions (PRLs) are chronic active lesions associated with a more severe disease course in multiple sclerosis (MS). Retinal layer thinning measured by optical coherence tomography (OCT) is a biomarker of neuroaxonal damage associated with disability progression in MS. OBJECTIVE: We aimed to determine a potential association between OCT parameters (peripapillary retinal nerve fiber layer (pRNFL) ganglion cell-inner plexiform layer (GCIPL), inner nuclear layer (INL) thickness), and PRLs in patients with MS (pwMS). METHODS: In this cross-sectional retrospective study, we included pwMS with both 3T brain MRI and an OCT scan. Regression models were calculated with OCT parameters (pRNFL, GCIPL, INL) as dependent variables, and the number of PRLs as an independent variable adjusted for covariates. RESULTS: We analyzed data from 107 pwMS (mean age 34.7 years (SD 10.9), 64.5% female, median disease duration 6 years (IQR 1-13), median EDSS 1.5 (range 0-6.5)). Higher number of PRLs was associated with lower pRNFL (ß = -0.18; 95% CI -0.98, -0.03; p = 0.038) and GCIPL thickness (ß = -0.21; 95% CI -0.58, -0.02; p = 0.039). CONCLUSION: The association between higher number of PRLs and lower pRNFL and GCIPL thicknesses provides additional evidence that pwMS with PRLs are affected by a more pronounced neurodegenerative process.


Assuntos
Esclerose Múltipla , Degeneração Retiniana , Humanos , Feminino , Adulto , Masculino , Esclerose Múltipla/patologia , Estudos Retrospectivos , Estudos Transversais , Fibras Nervosas/patologia , Retina/patologia , Degeneração Retiniana/patologia , Tomografia de Coerência Óptica/métodos
8.
Mult Scler ; 29(11-12): 1406-1417, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37712486

RESUMO

BACKGROUND: Paramagnetic rim lesions (PRLs) are an imaging biomarker in multiple sclerosis (MS), associated with a more severe disease. OBJECTIVES: To determine quantitative magnetic resonance imaging (MRI) metrics of PRLs, lesions with diffuse susceptibility-weighted imaging (SWI)-hypointense signal (DSHLs) and SWI-isointense lesions (SILs), their surrounding periplaque area (PPA) and the normal-appearing white matter (NAWM). METHODS: In a cross-sectional study, quantitative MRI metrics were measured in people with multiple sclerosis (pwMS) using the multi-dynamic multi-echo (MDME) sequence post-processing software "SyMRI." RESULTS: In 30 pwMS, 59 PRLs, 74 DSHLs, and 107 SILs were identified. Beside longer T1 relaxation times of PRLs compared to DSHLs and SILs (2030.5 (1519-2540) vs 1615.8 (1403.3-1953.5) vs 1199.5 (1089.6-1334.6), both p < 0.001), longer T1 relaxation times were observed in the PRL PPA compared to the SIL PPA and the NAWM but not the DSHL PPA. Patients with secondary progressive multiple sclerosis (SPMS) had longer T1 relaxation times in PRLs compared to patients with late relapsing multiple sclerosis (lRMS) (2394.5 (2030.5-3040) vs 1869.3 (1491.4-2451.3), p = 0.015) and also in the PRL PPA compared to patients with early relapsing multiple sclerosis (eRMS) (982 (927-1093.5) vs 904.3 (793.3-958.5), p = 0.013). CONCLUSION: PRLs are more destructive than SILs, leading to diffuse periplaque white matter (WM) damage. The quantitative MRI-based evaluation of the PRL PPA could be a marker for silent progression in pwMS.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Transversais , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
9.
Mult Scler ; 29(14): 1721-1735, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37830484

RESUMO

BACKGROUND: Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein not previously described in the human central nervous system (CNS). OBJECTIVES: We determined MFAP4 CNS expression and measured cerebrospinal fluid (CSF) and serum levels. METHODS: Tissue was sampled at autopsy from patients with acute multiple sclerosis (MS) (n = 3), progressive MS (n = 3), neuromyelitis optica spectrum disorder (NMOSD) (n = 2), and controls (n = 9), including 6 healthy controls (HC). MFAP4 levels were measured in 152 patients: 49 MS, 62 NMOSD, 22 myelin oligodendrocyte glycoprotein-associated disease (MOGAD), and 19 isolated optic neuritis (ION). RESULTS: MFAP4 localized to meninges and vascular/perivascular spaces, intense in the optic nerve. At sites of active inflammation, MFAP4 reactivity was reduced in NMOSD and acute MS and less in progressive MS. CSF MFAP4 levels were reduced during relapse and at the onset of diseases (mean U/mL: MS 14.3, MOGAD 9.7, and ION 14.6 relative to HC 17.9. (p = 0.013, p = 0.000, and p = 0.019, respectively). Patients with acute ON (n = 68) had reduced CSF MFAP4 (mean U/mL: 14.5, p = 0.006). CSF MFAP4 levels correlated negatively with relapse severity (rho = -0.41, p = 0.017). CONCLUSION: MFAP4 immunoreactivity was reduced at sites of active inflammation. CSF levels of MFAP4 were reduced following relapse and may reflect disease activity.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Neuromielite Óptica , Humanos , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica/líquido cefalorraquidiano , Sistema Nervoso Central , Inflamação , Autoanticorpos , Aquaporina 4/líquido cefalorraquidiano , Proteínas de Transporte , Glicoproteínas , Proteínas da Matriz Extracelular
10.
Ann Neurol ; 89(1): 13-23, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091175

RESUMO

The success of clinical trials of selective B-cell depletion in patients with relapsing multiple sclerosis (MS) and primary progressive MS has led to a conceptual shift in the understanding of MS pathogenesis, away from the classical model in which T cells were the sole central actors and toward a more complex paradigm with B cells having an essential role in both the inflammatory and neurodegenerative components of the disease process. The role of B cells in MS was selected as the topic of the 27th Annual Meeting of the European Charcot Foundation. Results of the meeting are presented in this concise review, which recaps current concepts underlying the biology and therapeutic rationale behind B-cell-directed therapeutics in MS, and proposes strategies to optimize the use of existing anti-B-cell treatments and provide future directions for research in this area. ANN NEUROL 2021;89:13-23.


Assuntos
Linfócitos B/citologia , Sistema Nervoso Central/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Autoanticorpos/imunologia , Humanos , Linfócitos T/citologia
11.
Ann Neurol ; 90(3): 440-454, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34231919

RESUMO

OBJECTIVE: Histology reveals that early active multiple sclerosis lesions can be classified into 3 main interindividually heterogeneous but intraindividually stable immunopathological patterns of active demyelination (patterns I-III). In patterns I and II, a T-cell- and macrophage-associated demyelination is suggested, with pattern II only showing signs of a humoral immune response. Pattern III is characterized by inflammatory lesions with an oligodendrocyte degeneration. Patterns suggest pathogenic heterogeneity, and we postulated that they have distinct magnetic resonance imaging (MRI) correlates that may serve as biomarkers. METHODS: We evaluated in an international collaborative retrospective cohort study the MRI lesion characteristics of 789 conventional prebiopsy and follow-up MRIs in relation to their histopathologically classified immunopathological patterns (n = 161 subjects) and lesion edge features (n = 112). RESULTS: A strong association of a ringlike enhancement and a hypointense T2-weighted (T2w) rim with patterns I and II, but not pattern III, was observed. Only a fraction of pattern III patients showed a ringlike enhancement, and this was always atypical. Ringlike enhancement and T2w rims colocalized, and ringlike enhancement showed a strong association with macrophage rims as shown by histology. A strong concordance of MRI lesion characteristics, meaning that different lesions showed the same features, was found when comparing biopsied and nonbiopsied lesions at a given time point, indicating lesion homogeneity within individual patients. INTERPRETATION: We provide robust evidence that MRI characteristics reflect specific morphological features of multiple sclerosis immunopatterns and that ringlike enhancement and T2w hypointense rims might serve as a valuable noninvasive biomarker to differentiate pathological patterns of demyelination. ANN NEUROL 2021;90:440-454.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/imunologia , Adulto , Encéfalo/patologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Estudos Retrospectivos
12.
Ann Neurol ; 90(5): 725-737, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562035

RESUMO

OBJECTIVE: To describe the neuropathological features of N-methyl-D-aspartate receptor (NMDAR)-encephalitis in an archival autopsy cohort. METHODS: We examined four autopsies from patients with NMDAR-encephalitis; two patients were untreated, three had comorbidities: small cell lung cancer, brain post-transplant lymphoproliferative disease (PTLD), and overlapping demyelination. RESULTS: The two untreated patients had inflammatory infiltrates predominantly composed of perivascular and parenchymal CD3+ /CD8- T cells and CD79a+ B cells/plasma cells in basal ganglia, amygdala, and hippocampus with surrounding white matter. The hippocampi showed a significant decrease of NMDAR-immunoreactivity that correlated with disease severity. The patient with NMDAR-encephalitis and immunosuppression for kidney transplantation developed a brain monomorphic PTLD. Inflammatory changes were compatible with NMDAR-encephalitis. Additionally, plasma cells accumulated in the vicinity of the necrotic tumor along with macrophages and activated microglia that strongly expressed pro-inflammatory activation markers HLA-DR, CD68, and IL18. The fourth patient developed demyelinating lesions in the setting of a relapse 4 years after NMDAR-encephalitis. These lesions exhibited the hallmarks of classic multiple sclerosis with radially expanding lesions and remyelinated shadow plaques without complement or immunoglobulin deposition, compatible with a pattern I demyelination. INTERPRETATION: The topographic distribution of inflammation in patients with NMDAR-encephalitis reflects the clinical symptoms of movement disorders, abnormal behavior, and memory dysfunction with inflammation dominantly observed in basal ganglia, amygdala, and hippocampus, and loss of NMDAR-immunoreactivity correlates with disease severity. Co-occurring pathologies influence the spatial distribution, composition, and intensity of inflammation, which may modify patients' clinical presentation and outcome. ANN NEUROL 2021;90:725-737.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico , Encefalite Antirreceptor de N-Metil-D-Aspartato/patologia , Recidiva Local de Neoplasia/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Encéfalo/patologia , Proteínas do Sistema Complemento/metabolismo , Humanos , Masculino , Doenças do Sistema Nervoso/patologia
13.
Ann Neurol ; 89(3): 498-510, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33244761

RESUMO

OBJECTIVE: Multiple sclerosis (MS) is a heterogeneous inflammatory demyelinating disease. Iron distribution is altered in MS patients' brains, suggesting iron liberation within active lesions amplifies demyelination and neurodegeneration. Whether the amount and distribution of iron are similar or different among different MS immunopatterns is currently unknown. METHODS: We used synchrotron X-ray fluorescence imaging, histology, and immunohistochemistry to compare the iron quantity and distribution between immunopattern II and III early active MS lesions. We analyzed archival autopsy and biopsy tissue from 21 MS patients. RESULTS: Immunopattern II early active lesions contain 64% more iron (95% confidence interval [CI] = 17-127%, p = 0.004) than immunopattern III lesions, and 30% more iron than the surrounding periplaque white matter (95% CI = 3-64%, p = 0.03). Iron in immunopattern III lesions is 28% lower than in the periplaque white matter (95% CI = -40 to -14%, p < 0.001). When normalizing the iron content of early active lesions to that of surrounding periplaque white matter, the ratio is significantly higher in immunopattern II (p < 0.001). Microfocused X-ray fluorescence imaging shows that iron in immunopattern II lesions localizes to macrophages, whereas macrophages in immunopattern III lesions contain little iron. INTERPRETATION: Iron distribution and content are heterogeneous in early active MS lesions. Iron accumulates in macrophages in immunopattern II, but not immunopattern III lesions. This heterogeneity in the two most common MS immunopatterns may be explained by different macrophage polarization, origin, or different demyelination mechanisms, and paves the way for developing new or using existing iron-sensitive magnetic resonance imaging techniques to differentiate among immunopatterns in the general nonbiopsied MS patient population. ANN NEUROL 2021;89:498-510.


Assuntos
Encéfalo/metabolismo , Ferro/metabolismo , Esclerose Múltipla/metabolismo , Adolescente , Adulto , Idoso , Apoferritinas/metabolismo , Apoptose , Encéfalo/imunologia , Encéfalo/patologia , Criança , Proteínas do Sistema Complemento/metabolismo , Feminino , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Humanos , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Proteínas da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Oligodendroglia/metabolismo , Imagem Óptica , Espectrometria por Raios X , Síncrotrons , Adulto Jovem
14.
Eur J Neurol ; 29(9): 2869-2877, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35427431

RESUMO

BACKGROUND AND PURPOSE: Neuropathology plays a major role in deciphering disease mechanisms in multiple sclerosis (MS). This review article describes recent advances in neuropathological research related to inflammatory demyelinating diseases. METHODS: A retrospective review of neuropathological studies published during the last two decades was conducted. RESULTS: The importance of neuropathology is generally seen in its contribution to the diagnosis of diseases of the nervous system and, in particular, in neuro-oncology. However, when it also includes analysis of the global three-dimensional extension of brain damage and the temporal sequence of lesion evolution and relates this to molecular changes in the lesions, it offers the potential to decipher disease pathogenesis and to contribute to the development of effective and causative treatments. In MS research, neuropathology has been essential in discriminating the disease from other inflammatory autoimmune or demyelinating diseases, such as neuromyelitis optica spectrum disorders (NMOSD) or myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). It defined the hallmark of chronic progressive disease in MS patients as slowly expanding tissue damage, which occurs not only within and around lesions but also in the normal appearing white and gray matter. It showed that these changes occur in the course of a tissue-resident immune response within the central nervous system, involving tissue-resident effector memory cells and plasma cells. Molecular studies in neuropathologically defined micro-dissected MS lesions identified a cascade of oxidative injury, mitochondrial damage and subsequent virtual hypoxia as a major pathway of tissue injury in MS. CONCLUSIONS: The results of these studies were highly relevant for the identification of potential therapeutic targets in MS patients and the design of pivotal clinical trials.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Aquaporina 4 , Autoanticorpos , Sistema Nervoso Central , Humanos , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica/patologia
15.
Brain ; 144(1): 144-161, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33578421

RESUMO

Traumatic spinal cord injury is a devastating insult followed by progressive cord atrophy and neurodegeneration. Dysregulated or non-resolving inflammatory processes can disturb neuronal homeostasis and drive neurodegeneration. Here, we provide an in-depth characterization of innate and adaptive inflammatory responses as well as oxidative tissue injury in human traumatic spinal cord injury lesions compared to non-traumatic control cords. In the lesion core, microglia were rapidly lost while intermediate (co-expressing pro- as well as anti-inflammatory molecules) blood-borne macrophages dominated. In contrast, in the surrounding rim, TMEM119+ microglia numbers were maintained through local proliferation and demonstrated a predominantly pro-inflammatory phenotype. Lymphocyte numbers were low and mainly consisted of CD8+ T cells. Only in a subpopulation of patients, CD138+/IgG+ plasma cells were detected, which could serve as candidate cellular sources for a developing humoral immunity. Oxidative neuronal cell body and axonal injury was visualized by intracellular accumulation of amyloid precursor protein (APP) and oxidized phospholipids (e06) and occurred early within the lesion core and declined over time. In contrast, within the surrounding rim, pronounced APP+/e06+ axon-dendritic injury of neurons was detected, which remained significantly elevated up to months/years, thus providing mechanistic evidence for ongoing neuronal damage long after initial trauma. Dynamic and sustained neurotoxicity after human spinal cord injury might be a substantial contributor to (i) an impaired response to rehabilitation; (ii) overall failure of recovery; or (iii) late loss of recovered function (neuro-worsening/degeneration).


Assuntos
Mielite/imunologia , Estresse Oxidativo/imunologia , Traumatismos da Medula Espinal/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/imunologia , Feminino , Humanos , Macrófagos/imunologia , Masculino , Microglia/imunologia , Pessoa de Meia-Idade , Mielite/etiologia , Mielite/patologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia
16.
Brain ; 144(3): 833-847, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33484118

RESUMO

Recent data suggest that multiple sclerosis white matter lesions surrounded by a rim of iron containing microglia, termed iron rim lesions, signify patients with more severe disease course and a propensity to develop progressive multiple sclerosis. So far, however, little is known regarding the dynamics of iron rim lesions over long-time follow-up. In a prospective longitudinal cohort study in 33 patients (17 females; 30 relapsing-remitting, three secondary progressive multiple sclerosis; median age 36.6 years (18.6-62.6), we characterized the evolution of iron rim lesions by MRI at 7 T with annual scanning. The longest follow-up was 7 years in a subgroup of eight patients. Median and mean observation period were 1 (0-7) and 2.9 (±2.6) years, respectively. Images were acquired using a fluid-attenuated inversion recovery sequence fused with iron-sensitive MRI phase data, termed FLAIR-SWI, as well as a magnetization prepared two rapid acquisition gradient echoes, termed MP2RAGE. Volumes and T1 relaxation times of lesions with and without iron rims were assessed by manual segmentation. The pathological substrates of periplaque signal changes outside the iron rims were corroborated by targeted histological analysis on 17 post-mortem cases (10 females; two relapsing-remitting, 13 secondary progressive and two primary progressive multiple sclerosis; median age 66 years (34-88), four of them with available post-mortem 7 T MRI data. We observed 16 nascent iron rim lesions, which mainly formed in relapsing-remitting multiple sclerosis. Iron rim lesion fraction was significantly higher in relapsing-remitting than progressive disease (17.8 versus 7.2%; P < 0.001). In secondary progressive multiple sclerosis only, iron rim lesions showed significantly different volume dynamics (P < 0.034) compared with non-rim lesions, which significantly shrank with time in both relapsing-remitting (P < 0.001) and secondary progressive multiple sclerosis (P < 0.004). The iron rims themselves gradually diminished with time (P < 0.008). Compared with relapsing-remitting multiple sclerosis, iron rim lesions in secondary progressive multiple sclerosis were significantly more destructive than non-iron rim lesions (P < 0.001), reflected by prolonged lesional T1 relaxation times and by progressively increasing changes ascribed to secondary axonal degeneration in the periplaque white matter. Our study for the first time shows that chronic active lesions in multiple sclerosis patients evolve over many years after their initial formation. The dynamics of iron rim lesions thus provide one explanation for progressive brain damage and disability accrual in patients. Their systematic recording might become useful as a tool for predicting disease progression and monitoring treatment in progressive multiple sclerosis.


Assuntos
Encéfalo/patologia , Esclerose Múltipla/patologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Ferro , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Adulto Jovem
17.
Brain ; 144(8): 2291-2301, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34426831

RESUMO

Extrinsic inhibitors at sites of blood-brain barrier disruption and neurovascular damage contribute to remyelination failure in neurological diseases. However, therapies to overcome the extrinsic inhibition of remyelination are not widely available and the dynamics of glial progenitor niche remodelling at sites of neurovascular dysfunction are largely unknown. By integrating in vivo two-photon imaging co-registered with electron microscopy and transcriptomics in chronic neuroinflammatory lesions, we found that oligodendrocyte precursor cells clustered perivascularly at sites of limited remyelination with deposition of fibrinogen, a blood coagulation factor abundantly deposited in multiple sclerosis lesions. By developing a screen (OPC-X-screen) to identify compounds that promote remyelination in the presence of extrinsic inhibitors, we showed that known promyelinating drugs did not rescue the extrinsic inhibition of remyelination by fibrinogen. In contrast, bone morphogenetic protein type I receptor blockade rescued the inhibitory fibrinogen effects and restored a promyelinating progenitor niche by promoting myelinating oligodendrocytes, while suppressing astrocyte cell fate, with potent therapeutic effects in chronic models of multiple sclerosis. Thus, abortive oligodendrocyte precursor cell differentiation by fibrinogen is refractory to known promyelinating compounds, suggesting that blockade of the bone morphogenetic protein signalling pathway may enhance remyelinating efficacy by overcoming extrinsic inhibition in neuroinflammatory lesions with vascular damage.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Receptores de Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Oligodendroglia/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Barreira Hematoencefálica/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Medula Espinal/metabolismo
18.
Brain ; 144(8): 2401-2415, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33711152

RESUMO

Aquaporin 4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) is an autoimmune astrocytopathic disease pathologically characterized by the massive destruction and regeneration of astrocytes with diverse types of tissue injury with or without complement deposition. However, it is unknown whether this diversity is derived from differences in pathological processes or temporal changes. Furthermore, unlike for the demyelinating lesions in multiple sclerosis, there has been no staging of astrocytopathy in AQP4-IgG+NMOSD based on astrocyte morphology. Therefore, we classified astrocytopathy of the disease by comparing the characteristic features, such as AQP4 loss, inflammatory cell infiltration, complement deposition and demyelination activity, with the clinical phase. We performed histopathological analyses in eight autopsied cases of AQP4-IgG+NMOSD. Cases comprised six females and two males, with a median age of 56.5 years (range, 46-71 years) and a median disease duration of 62.5 months (range, 0.6-252 months). Astrocytopathy in AQP4-IgG+NMOSD was classified into the following four stages defined by the astrocyte morphology and immunoreactivity for GFAP: (i) astrocyte lysis: extensive loss of astrocytes with fragmented and/or dust-like particles; (ii) progenitor recruitment: loss of astrocytes except small nucleated cells with GFAP-positive fibre-forming foot processes; (iii) protoplasmic gliosis: presence of star-shaped astrocytes with abundant GFAP-reactive cytoplasm; and (iv) fibrous gliosis: lesions composed of densely packed mature astrocytes. The astrocyte lysis and progenitor recruitment stages dominated in clinically acute cases (within 2 months after the last recurrence). Findings common to both stages were the loss of AQP4, a decreased number of oligodendrocytes, the selective loss of myelin-associated glycoprotein and active demyelination with phagocytic macrophages. The infiltration of polymorphonuclear cells and T cells (CD4-dominant) and the deposition of activated complement (C9neo), which reflects the membrane attack complex, a hallmark of acute NMOSD lesions, were selectively observed in the astrocyte lysis stage (98.4% in astrocyte lysis, 1.6% in progenitor recruitment, and 0% in protoplasmic gliosis and fibrous gliosis). Although most of the protoplasmic gliosis and fibrous gliosis lesions were accompanied by inactive demyelinated lesions with a low amount of inflammatory cell infiltration, the deposition of complement degradation product (C3d) was observed in all four stages, even in fibrous gliosis lesions, suggesting the past or chronic occurrence of complement activation, which is a useful finding to distinguish chronic lesions in NMOSD from those in multiple sclerosis. Our staging of astrocytopathy is expected to be useful for understanding the unique temporal pathology of AQP4-IgG+NMOSD.


Assuntos
Astrócitos/patologia , Encéfalo/patologia , Ativação do Complemento/fisiologia , Neuromielite Óptica/patologia , Idoso , Aquaporina 4/imunologia , Astrócitos/imunologia , Autoanticorpos , Encéfalo/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/imunologia
19.
J Neuroinflammation ; 18(1): 222, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565380

RESUMO

BACKGROUND: During inflammatory demyelination, TNF receptor 1 (TNFR1) mediates detrimental proinflammatory effects of soluble TNF (solTNF), whereas TNFR2 mediates beneficial effects of transmembrane TNF (tmTNF) through oligodendroglia, microglia, and possibly other cell types. This model supports the use of selective inhibitors of solTNF/TNFR1 as anti-inflammatory drugs for central nervous system (CNS) diseases. A potential obstacle is the neuroprotective effect of solTNF pretreatment described in cultured neurons, but the relevance in vivo is unknown. METHODS: To address this question, we generated mice with neuron-specific depletion of TNFR1, TNFR2, or inhibitor of NF-κB kinase subunit ß (IKKß), a main downstream mediator of TNFR signaling, and applied experimental models of inflammatory demyelination and acute and preconditioning glutamate excitotoxicity. We also investigated the molecular and cellular requirements of solTNF neuroprotection by generating astrocyte-neuron co-cultures with different combinations of wild-type (WT) and TNF and TNFR knockout cells and measuring N-methyl-D-aspartate (NMDA) excitotoxicity in vitro. RESULTS: Neither neuronal TNFR1 nor TNFR2 protected mice during inflammatory demyelination. In fact, both neuronal TNFR1 and neuronal IKKß promoted microglial responses and tissue injury, and TNFR1 was further required for oligodendrocyte loss and axonal damage in cuprizone-induced demyelination. In contrast, neuronal TNFR2 increased preconditioning protection in a kainic acid (KA) excitotoxicity model in mice and limited hippocampal neuron death. The protective effects of neuronal TNFR2 observed in vivo were further investigated in vitro. As previously described, pretreatment of astrocyte-neuron co-cultures with solTNF (and therefore TNFR1) protected them against NMDA excitotoxicity. However, protection was dependent on astrocyte, not neuronal TNFR1, on astrocyte tmTNF-neuronal TNFR2 interactions, and was reproduced by a TNFR2 agonist. CONCLUSIONS: These results demonstrate that neuronal TNF receptors perform fundamentally different roles in CNS pathology in vivo, with neuronal TNFR1 and IKKß promoting microglial inflammation and neurotoxicity in demyelination, and neuronal TNFR2 mediating neuroprotection in excitotoxicity. They also reveal that previously described neuroprotective effects of solTNF against glutamate excitotoxicity in vitro are indirect and mediated via astrocyte tmTNF-neuron TNFR2 interactions. These results consolidate the concept that selective inhibition of solTNF/TNFR1 with maintenance of TNFR2 function would have combined anti-inflammatory and neuroprotective properties required for safe treatment of CNS diseases.


Assuntos
Quinase I-kappa B/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Neurônios/patologia , Neuroproteção/fisiologia , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/patologia
20.
Ann Neurol ; 88(3): 438-452, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32506714

RESUMO

The identification of progression in multiple sclerosis is typically retrospective. Given the profound burden of progressive multiple sclerosis, and the recent development of effective treatments for these patients, there is a need to establish measures capable of identifying progressive multiple sclerosis early in the disease course. Starting from recent pathological findings, this review assesses the state of the art of potential measures able to predict progressive multiple sclerosis. Future promising biomarkers that might shed light on mechanisms of progression are also discussed. Finally, expansion of the concept of progressive multiple sclerosis, by including an assessment of cognition, patient-reported outcomes, and comorbidities, is considered. ANN NEUROL 2020;88:438-452.


Assuntos
Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA