Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38117407

RESUMO

Antifungal resistance poses a significant challenge to disease management, necessitating the development of novel drugs. Antimicrobial peptides offer potential solutions. This study focused on extraction and characterization of peptides from Adenanthera pavonina seeds with activity against Candida species, Mycobacterium tuberculosis, proteases, and α-amylases. Peptides were extracted in phosphate buffer and heated at 90°C for 10 min to create a peptide rich heated fraction (PRHF). After confirming antimicrobial activity and the presence of peptides, the PRHF underwent ion exchange chromatography, yielding retained and non-retained fractions. These fractions were evaluated for antimicrobial activity and cytotoxicity against murine macrophages. The least toxic and most active fraction underwent reversed-phase chromatography, resulting in ten fractions. These fractions were tested for peptides and antimicrobial activity. The most active fraction was rechromatographed on a reversed-phase column, resulting in two fractions that were assessed for antimicrobial activity. The most active fraction revealed a single band of approximately 6 kDa and was tested for inhibitory effects on proteases and α-amylases. Thermal stability experiments were conducted on the 6 kDa peptide at different temperatures followed by reassessment of antifungal activity and circular dichroism. The 6 kDa peptide inhibited yeasts, M. tuberculosis, human salivary and Tenebrio molitor larvae intestine α-amylases, and proteolytic activity from fungal extracts, and thus named ApPI. Remarkably, ApPI retained antifungal activity and conformation after heating and is primarily composed of α-helices. ApPI is a thermally stable serine protease/α-amylase inhibitor from A. pavonina seeds, offering promise as a foundational molecule for innovative therapeutic agents against fungal infections and tuberculosis.

2.
Rev. bras. farmacogn ; 29(1): 40-45, Jan.-Feb. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-990765

RESUMO

Abstract The chemical study of roots from Azadirachta indica A. Juss., Meliaceae, led to the isolation of two new terpenoids, limonoid morenolide and diterpene 17-hydroxy-sandaracopimar-8,15-dien-11-one, in addition to the four well-known limonoids nimbinene, nimbinal, nimbandiol and salannin, and three diterpenoids nimbidiol, ferruginol, and 6,7-dehydroferruginol. Their structural elucidations were based on one and bidimensional Nuclear Magnetic Resonance and Electrospray ionization mass spectrometry spectra data which was compared to the data found in literature. The anti-inflammatory, cytotoxic and antimycobacterial activities of the identified terpenoids were evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA