Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 14(18): 3478-3489, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29700541

RESUMO

Detailed understanding of the local structure-property relationships in soft biopolymeric hydrogels can be instrumental for applications in regenerative tissue engineering. Resilin-like polypeptide (RLP) hydrogels have been previously demonstrated as useful biomaterials with a unique combination of low elastic moduli, excellent resilience, and cell-adhesive properties. However, comprehensive mechanical characterization of RLP hydrogels under both low-strain and high-strain conditions has not yet been conducted, despite the unique information such measurements can provide about the local structure and macromolecular behavior underpinning mechanical properties. In this study, mechanical properties (elastic modulus, resilience, and fracture initiation toughness) of equilibrium swollen resilin-based hydrogels were characterized via oscillatory shear rheology, small-strain microindentation, and large-strain puncture tests as a function of polypeptide concentration. These methods allowed characterization, for the first time, of the resilience and failure in hydrogels with low polypeptide concentrations (<20 wt%), as the employed methods obviate the handling difficulties inherent in the characterization of such soft materials via standard mechanical techniques, allowing characterization without any special sample preparation and requiring minimal volumes (as low as 50 µL). Elastic moduli measured from small-strain microindentation showed good correlation with elastic storage moduli obtained from oscillatory shear rheology at a comparable applied strain rate, and evaluation of multiple loading-unloading cycles revealed decreased resilience values at lower hydrogel concentrations. In addition, large-strain indentation-to-failure (or puncture) tests were performed to measure large-strain mechanical response and fracture toughness on length scales similar to biological cells (∼10-50 µm) at various polypeptide concentrations, indicating very high fracture initiation toughness for high-concentration hydrogels. Our results establish the utility of employing microscale mechanical methods for the characterization of the local mechanical properties of biopolymeric hydrogels of low concentrations (<20 wt%), and show how the combination of small and large-strain measurements can provide unique insight into structure-property relationships for biopolymeric elastomers. Overall, this study provides new insight into the effects on local mechanical properties of polypeptide concentration near the overlap polymer concentration c* for resilin-based hydrogels, confirming their unique elastomeric features for applications in regenerative medicine.

2.
Biomacromolecules ; 16(1): 28-42, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25426888

RESUMO

Hydrogels provide mechanical support and a hydrated environment that offer good cytocompatibility and controlled release of molecules, and myriad hydrogels thus have been studied for biomedical applications. In the past few decades, research in these areas has shifted increasingly to multicomponent hydrogels that better capture the multifunctional nature of native biological environments and that offer opportunities to selectively tailor materials properties. This review summarizes recent approaches aimed at producing multicomponent hydrogels, with descriptions of contemporary chemical and physical approaches for forming networks, and of the use of both synthetic and biologically derived molecules to impart desired properties. Specific multicomponent materials with enhanced mechanical properties are presented, as well as materials in which multiple biological functions are imparted for applications in tissue engineering, cancer treatment, and gene therapies. The progress in the field suggests significant promise for these approaches in the development of biomedically relevant materials.


Assuntos
Materiais Biocompatíveis/química , Tecnologia Biomédica/tendências , Hidrogéis/química , Animais , Materiais Biocompatíveis/uso terapêutico , Tecnologia Biomédica/métodos , Química Click/métodos , Química Click/tendências , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Humanos , Hidrogéis/uso terapêutico , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
3.
Macromol Biosci ; 20(5): e1900360, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237050

RESUMO

Local, micromechanical environment is known to influence cellular function in heterogeneous hydrogels, and knowledge gained in micromechanics will facilitate the improved design of biomaterials for tissue regeneration. In this study, a system comprising microstructured resilin-like polypeptide (RLP)-poly(ethylene glycol) (PEG) hydrogels is utilized. The micromechanical properties of RLP-PEG hydrogels are evaluated with oscillatory shear rheometry, compression dynamic mechanic analysis, small-strain microindentation, and large-strain indentation and puncture over a range of different deformation length scales. The measured elastic moduli are consistent with volume averaging models, indicating that volume fraction, not domain size, plays a dominant role in determining the low strain mechanical response. Large-strain indentation under a confocal microscope enables the visualization of the microstructured hydrogel micromechanical deformation, emphasizing the translation, rotation, and deformation of RLP-rich domains. The fracture initiation energy results demonstrate that failure of the composite hydrogels is controlled by the RLP-rich phase, and their independence with domain size suggested that failure initiation is controlled by multiple domains within the strained volume. This approach and findings provide new quantitative insight into the micromechanical response of soft hydrogel composites and highlight the opportunities in employing these methods to understand the physical origins of mechanical properties of soft synthetic and biological materials.


Assuntos
Elastômeros/química , Hidrogéis/química , Fenômenos Mecânicos , Proteínas de Insetos/química , Peptídeos/química , Polietilenoglicóis/química
4.
Regen Eng Transl Med ; 5(4): 373-386, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33829078

RESUMO

Vocal fold scar, characterized by alterations in the lamina propria extracellular matrix, disrupts normal voice quality and function. Due to a lack of satisfactory clinical treatments, there is a need for tissue engineering strategies to restore voice. Candidate biomaterials for vocal fold tissue engineering must match the unique biomechanical and viscoelastic properties of native tissue without provoking inflammation. We sought to introduce elastomeric properties to hyaluronic acid (HA)-based biomaterials by incorporating resilin-like polypeptide (RLP) into hybrid hydrogels. Physically crosslinked RLP/HA and chemically crosslinked RLP-acrylamide/thiolated HA (RLP-AM/HA-SH) hydrogels were fabricated using cytocompatible chemistries. Mechanical properties of hydrogels were assessed in vitro using oscillatory rheology. Hybrid hydrogels were injected into rabbit vocal folds and tissues were assessed using rheology and histology. A small number of animals underwent acute vocal fold injury followed by injection of RLP-AM/HA-SH hydrogel alone or as a carrier for human bone marrow mesenchymal stem cells (BM-MSCs). Rheological testing confirmed that mechanical properties of materials in vitro resembled native vocal fold tissue and that viscoelasticity of vocal fold mucosa was preserved days 5 and 21 after injection. Histological analysis revealed that hybrid hydrogels provoked only mild inflammation in vocal fold lamina propria with demonstrated safety in the airway for up to 3 weeks, confirming acute biocompatibility of crosslinking chemistries. After acute injury, RLP-AM/HA-SH gel with and without BM-MSCs did not result in adverse effects or increased inflammation. Collectively, results indicate that RLP and HA-based hybrid hydrogels are highly promising for engineering the vocal fold lamina propria.

5.
Adv Sci (Weinh) ; 5(6): 1701010, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938180

RESUMO

Heterogeneous hydrogels with desired matrix complexity are studied for a variety of biomimetic materials. Despite the range of such microstructured materials described, few methods permit independent control over microstructure and microscale mechanics by precisely controlled, single-step processing methods. Here, a phototriggered crosslinking methodology that traps microstructures in liquid-liquid phase-separated solutions of a highly elastomeric resilin-like polypeptide (RLP) and poly(ethylene glycol) (PEG) is reported. RLP-rich domains of various diameters can be trapped in a PEG continuous phase, with the kinetics of domain maturation dependent on the degree of acrylation. The chemical composition of both hydrogel phases over time is assessed via in situ hyperspectral coherent Raman microscopy, with equilibrium concentrations consistent with the compositions derived from NMR-measured coexistence curves. Atomic force microscopy reveals that the local mechanical properties of the two phases evolve over time, even as the bulk modulus of the material remains constant, showing that the strategy permits control of mechanical properties on micrometer length scales, of relevance in generating mechanically robust materials for a range of applications. As one example, the successful encapsulation, localization, and survival of primary cells are demonstrated and suggest the potential application of phase-separated RLP-PEG hydrogels in regenerative medicine applications.

6.
ACS Biomater Sci Eng ; 3(5): 757-766, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33440486

RESUMO

Multiple approaches to generate microstructured hydrogels have emerged in order to control microscale properties for applications ranging from mechanical reinforcement to regenerative medicine. Here, we report new heterogeneous hybrid hydrogels comprising emerging resilin-like polypeptides (RLPs); the hydrogels can be engineered with controlled microstructure and distinct micromechanical properties via the liquid-liquid phase separation (LLPS) of aqueous solutions of the RLPs and poly(ethylene glycol) (PEG). The microstructure in the hydrogels was captured by cross-linking a phase-separated RLP and PEG solution via a Mannich-type reaction with the cross-linker tris(hydroxymethyl phosphine) (THP). Phase diagrams of the RLP/PEG system were generated in order to define solution parameters that would yield micron-scale domains in the hydrogels with diameters on the order of 20-90 µm; the production of RLP- and PEG-rich domains with these dimensions was confirmed via confocal microscopy. The hydrogel mechanical properties were assessed via oscillatory rheology and atomic force microscopy (AFM), with the hydrogels exhibiting a moderate bulk shear storage modulus (ca. 600 Pa) and micromechanical properties of the domains (Young's modulus ca. 13 kPa) that were distinct from those of the matrix (ca. 6 kPa). These results demonstrate that tuning the parameters of the aqueous-aqueous phase-separated RLP/PEG solutions provides a simple, straightforward methodology for fabricating microstructured protein-containing hydrogels, without extensive material processing or purification. Given the unusual mechanical properties of the resilins, these methods potentially could be useful for engineering the micromechanical properties and cellular behavior in phase-separated protein-polymer hydrogels.

7.
Nanoscale ; 6(9): 4551-4, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24667970

RESUMO

We present a facile approach to synthesize "dumbbell" nanoparticle dimers via one-step coupling of nanoparticles and quasi-two-dimensional polymer single crystals. These dimers exhibit responsive properties enabled by flexible polymeric linkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA