Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nature ; 605(7911): 681-686, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35614247

RESUMO

Cilial pumping is a powerful strategy used by biological organisms to control and manipulate fluids at the microscale. However, despite numerous recent advances in optically, magnetically and electrically driven actuation, development of an engineered cilial platform with the potential for applications has remained difficult to realize1-6. Here we report on active metasurfaces of electronically actuated artificial cilia that can create arbitrary flow patterns in liquids near a surface. We first create voltage-actuated cilia that generate non-reciprocal motions to drive surface flows at tens of microns per second at actuation voltages of 1 volt. We then show that a cilia unit cell can locally create a range of elemental flow geometries. By combining these unit cells, we create an active cilia metasurface that can generate and switch between any desired surface flow pattern. Finally, we integrate the cilia with a light-powered complementary metal-oxide-semiconductor (CMOS) clock circuit to demonstrate wireless operation. As a proof of concept, we use this circuit to output voltage pulses with various phase delays to demonstrate improved pumping efficiency using metachronal waves. These powerful results, demonstrated experimentally and confirmed using theoretical computations, illustrate a pathway towards fine-scale microfluidic manipulation, with applications from microfluidic pumping to microrobotic locomotion.

2.
Proc Natl Acad Sci U S A ; 120(48): e2310952120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991946

RESUMO

To swim through a viscous fluid, a flagellated bacterium must overcome the fluid drag on its body by rotating a flagellum or a bundle of multiple flagella. Because the drag increases with the size of bacteria, it is expected theoretically that the swimming speed of a bacterium inversely correlates with its body length. Nevertheless, despite extensive research, the fundamental size-speed relation of flagellated bacteria remains unclear with different experiments reporting conflicting results. Here, by critically reviewing the existing evidence and synergizing our own experiments of large sample sizes, hydrodynamic modeling, and simulations, we demonstrate that the average swimming speed of Escherichia coli, a premier model of peritrichous bacteria, is independent of their body length. Our quantitative analysis shows that such a counterintuitive relation is the consequence of the collective flagellar dynamics dictated by the linear correlation between the body length and the number of flagella of bacteria. Notably, our study reveals how bacteria utilize the increasing number of flagella to regulate the flagellar motor load. The collective load sharing among multiple flagella results in a lower load on each flagellar motor and therefore faster flagellar rotation, which compensates for the higher fluid drag on the longer bodies of bacteria. Without this balancing mechanism, the swimming speed of monotrichous bacteria generically decreases with increasing body length, a feature limiting the size variation of the bacteria. Altogether, our study resolves a long-standing controversy over the size-speed relation of flagellated bacteria and provides insights into the functional benefit of multiflagellarity in bacteria.


Assuntos
Movimento , Natação , Movimento/fisiologia , Flagelos/fisiologia , Rotação , Escherichia coli/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(45): e2212078119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322736

RESUMO

Surface-associated bacterial communities flourish in nature and in the body of animal hosts with abundant macromolecular polymers. It is unclear how the endowed viscoelasticity of polymeric fluids influences bacterial motile behavior in such environments. Here, we combined experiment and theory to study near-surface swimming of flagellated bacteria in viscoelastic polymer fluids. In contrast to the swimming behavior in Newtonian fluids, we discovered that cells swim in less curved trajectories and display reduced near-surface accumulation. Using a theoretical analysis of the non-Newtonian hydrodynamic forces, we demonstrated the existence of a generic lift force acting on a rotating filament near a rigid surface, which arises from the elastic tension generated along curved flow streamlines. This viscoelastic lift force weakens the hydrodynamic interaction between flagellated swimmers and solid surfaces and contributes to a decrease in surface accumulation. Our findings reveal previously unrecognized facets of bacterial transport and surface exploration in polymer-rich environments that are pertinent to diverse microbial processes and may inform the design of artificial microswimmers capable of navigating through complex geometries.


Assuntos
Polímeros , Natação , Animais , Modelos Biológicos , Hidrodinâmica , Bactérias
4.
Phys Rev Lett ; 132(10): 108301, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518318

RESUMO

Biased locomotion is a common feature of microorganisms, but little is known about its impact on self-organization. Inspired by recent experiments showing a transition to large-scale flows, we study theoretically the dynamics of magnetotactic bacteria confined to a drop. We reveal two symmetry-breaking mechanisms (one local chiral and one global achiral) leading to self-organization into global vortices and a net torque exerted on the drop. The collective behavior is ultimately controlled by the swimmers' microscopic chirality and, strikingly, the system can exhibit oscillations and memorylike features.

5.
Soft Matter ; 20(24): 4744-4764, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38837398

RESUMO

Bubble-propelled catalytic colloids stand out as a uniquely efficient design for artificial controllable micromachines, but so far lack a general theoretical framework that explains the physics of their propulsion. Here we develop a combined diffusive and hydrodynamic theory of bubble growth near a spherical catalytic colloid, that allows us to explain the underlying mechanism and the influence of environmental and material parameters. We identify two dimensionless groups, related to colloidal activity and the background fluid, that govern a saddle-node bifurcation of the bubble growth dynamics, and calculate the generated flows analytically for both slip and no slip boundary conditions on the bubble. We finish with a discussion of the assumptions and predictions of our model in the context of existing experimental results, and conclude that some of the observed behaviour, notably the ratchet-like gait, may stem from peculiarities of the experimental setup rather than fundamental physics of the propulsive mechanism.

6.
Phys Rev Lett ; 128(20): 208101, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657856

RESUMO

To rotate continuously without jamming, the flagellar filaments of bacteria need to be locked in phase. While several models have been proposed for eukaryotic flagella, the synchronization of bacterial flagella is less well understood. Starting from a reduced model of flexible and hydrodynamically coupled bacterial flagella, we rigorously coarse grain the equations of motion using the method of multiple scales, and hence show that bacterial flagella generically synchronize to zero phase difference via an elastohydrodynamic mechanism. Remarkably, the far-field rate of synchronization is maximized at an intermediate value of elastic compliance, with surprising implications for bacteria.


Assuntos
Flagelos , Modelos Biológicos , Bactérias , Cílios , Movimento (Física)
7.
Soft Matter ; 18(47): 8931-8944, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36408908

RESUMO

Biological and artificial microswimmers often self-propel in external flows of vortical nature; relevant examples include algae in small-scale ocean eddies, spermatozoa in uterine peristaltic flows and bacteria in microfluidic devices. A recent experiment has shown that swimming bacteria in model vortices are expelled from the vortex all the way to a well-defined depletion zone (A. Sokolov and I. S. Aranson, Rapid expulsion of microswimmers by a vortical flow. Nat. Commun., 2016, 7, 11114). In this paper, we propose a theoretical model to investigate the dynamics of elongated microswimmers in elementary vortices, namely active particles in two- and three-dimensional rotlets. A deterministic model first reveals the existence of bounded orbits near the centre of the vortex and unbounded orbits elsewhere. We further discover a conserved quantity of motion that allows us to map the phase space according to the type of the orbit (bounded vs unbounded). We next introduce translational and rotational noise into the system. Using a Fokker-Planck formalism, we quantify the quality of trapping near the centre of the vortex by examining the probability of escape and the mean time of escape from the region of deterministically bounded orbits. We finally show how to use these findings to formulate a prediction for the radius of the depletion zone, which compares favourably with the experiments (A. Sokolov and I. S. Aranson, Rapid expulsion of microswimmers by a vortical flow. Nat. Commun., 2016, 7, 11114).


Assuntos
Bactérias
8.
Biophys J ; 120(18): 4079-4090, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34384761

RESUMO

During muscle contraction, myosin motors anchored to thick filaments bind to and slide actin thin filaments. These motors rely on energy derived from ATP, supplied, in part, by diffusion from the sarcoplasm to the interior of the lattice of actin and myosin filaments. The radial spacing of filaments in this lattice may change or remain constant during contraction. If the lattice is isovolumetric, it must expand when the muscle shortens. If, however, the spacing is constant or has a different pattern of axial and radial motion, then the lattice changes volume during contraction, driving fluid motion and assisting in the transport of molecules between the contractile lattice and the surrounding intracellular space. We first create an advective-diffusive-reaction flow model and show that the flow into and out of the sarcomere lattice would be significant in the absence of lattice expansion. Advective transport coupled to diffusion has the potential to substantially enhance metabolite exchange within the crowded sarcomere. Using time-resolved x-ray diffraction of contracting muscle, we next show that the contractile lattice is neither isovolumetric nor constant in spacing. Instead, lattice spacing is time varying, depends on activation, and can manifest as an effective time-varying Poisson ratio. The resulting fluid flow in the sarcomere lattice of synchronous insect flight muscles is even greater than expected for constant lattice spacing conditions. Lattice spacing depends on a variety of factors that produce radial force, including cross-bridges, titin-like molecules, and other structural proteins. Volume change and advective transport varies with the phase of muscle stimulation during periodic contraction but remains significant at all conditions. Although varying in magnitude, advective transport will occur in all cases in which the sarcomere is not isovolumetric. Akin to "breathing," advective-diffusive transport in sarcomeres is sufficient to promote metabolite exchange and may play a role in the regulation of contraction itself.


Assuntos
Miofibrilas , Sarcômeros , Citoesqueleto de Actina , Contração Muscular , Miosinas
9.
Phys Rev Lett ; 127(19): 198102, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797132

RESUMO

In tissues as diverse as amphibian skin and the human airway, the cilia that propel fluid are grouped in sparsely distributed multiciliated cells (MCCs). We investigate fluid transport in this "mosaic" architecture, with emphasis on the trade-offs that may have been responsible for its evolutionary selection. Live imaging of MCCs in embryos of the frog Xenopus laevis shows that cilia bundles behave as active vortices that produce a flow field accurately represented by a local force applied to the fluid. A coarse-grained model that self-consistently couples bundles to the ambient flow reveals that hydrodynamic interactions between MCCs limit their rate of work so that they best shear the tissue at a finite but low area coverage, a result that mirrors findings for other sparse distributions such as cell receptors and leaf stomata.


Assuntos
Cílios/fisiologia , Hidrodinâmica , Animais , Humanos , Xenopus laevis
10.
Phys Rev Lett ; 126(2): 028103, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512217

RESUMO

In the cellular phenomena of cytoplasmic streaming, molecular motors carrying cargo along a network of microtubules entrain the surrounding fluid. The piconewton forces produced by individual motors are sufficient to deform long microtubules, as are the collective fluid flows generated by many moving motors. Studies of streaming during oocyte development in the fruit fly Drosophila melanogaster have shown a transition from a spatially disordered cytoskeleton, supporting flows with only short-ranged correlations, to an ordered state with a cell-spanning vortical flow. To test the hypothesis that this transition is driven by fluid-structure interactions, we study a discrete-filament model and a coarse-grained continuum theory for motors moving on a deformable cytoskeleton, both of which are shown to exhibit a swirling instability to spontaneous large-scale rotational motion, as observed.


Assuntos
Citoesqueleto/química , Citoesqueleto/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Citoplasma/química , Citoplasma/metabolismo , Corrente Citoplasmática , Drosophila melanogaster
11.
Arch Biochem Biophys ; 706: 108923, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34029559

RESUMO

A highly organized and densely packed lattice of molecular machinery within the sarcomeres of muscle cells powers contraction. Although many of the proteins that drive contraction have been studied extensively, the mechanical impact of fluid shearing within the lattice of molecular machinery has received minimal attention. It was recently proposed that fluid flow augments substrate transport in the sarcomere, however, this analysis used analytical models of fluid flow in the molecular machinery that could not capture its full complexity. By building a finite element model of the sarcomere, we estimate the explicit flow field, and contrast it with analytical models. Our results demonstrate that viscous drag forces on sliding filaments are surprisingly small in contrast to the forces generated by single myosin molecular motors. This model also indicates that the energetic cost of fluid flow through viscous shearing with lattice proteins is likely minimal. The model also highlights a steep velocity gradient between sliding filaments and demonstrates that the maximal radial fluid velocity occurs near the tips of the filaments. To our knowledge, this is the first computational analysis of fluid flow within the highly structured sarcomere.


Assuntos
Análise de Elementos Finitos , Modelos Biológicos , Miosinas/fisiologia , Sarcômeros/fisiologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Contração Muscular/fisiologia , Miosinas/ultraestrutura , Reologia , Sarcômeros/ultraestrutura , Termodinâmica , Viscosidade
12.
Soft Matter ; 17(18): 4857-4873, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33890590

RESUMO

Motivated by recent experiments demonstrating that motile algae get trapped in draining foams, we study the trajectories of microorganisms confined in model foam channels (section of a Plateau border). We track single Chlamydomonas reinhardtii cells confined in a thin three-circle microfluidic chamber and show that their spatial distribution exhibits strong corner accumulation. Using empirical scattering laws observed in previous experiments (scattering with a constant scattering angle), we next develop a two-dimension geometrical model and compute the phase space of trapped and periodic trajectories of swimmers inside a three-circles billiard. We find that the majority of cell trajectories end up in a corner, providing a geometrical mechanism for corner accumulation. Incorporating the distribution of scattering angles observed in our experiments and including hydrodynamic interactions between the cells and the surfaces into the geometrical model enables us to reproduce the experimental probability density function of micro-swimmers in microfluidic chambers. Both our experiments and models demonstrate therefore that motility leads generically to trapping in complex geometries.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Movimento Celular , Hidrodinâmica , Microfluídica
13.
J Exp Biol ; 223(Pt 24)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376093

RESUMO

In many organs, thousands of microscopic 'motile cilia' beat in a coordinated fashion generating fluid flow. Physiologically, these flows are important in both development and homeostasis of ciliated tissues. Combining experiments and simulations, we studied how cilia from brain tissue align their beating direction. We subjected cilia to a broad range of shear stresses, similar to the fluid flow that cilia themselves generate, in a microfluidic setup. In contrast to previous studies, we found that cilia from mouse ependyma respond and align to these physiological shear stress at all maturation stages. Cilia align more easily earlier in maturation, and we correlated this property with the increase in multiciliated cell density during maturation. Our numerical simulations show that cilia in densely packed clusters are hydrodynamically screened from the external flow, in agreement with our experimental observation. Cilia carpets create a hydrodynamic screening that reduces the susceptibility of individual cilia to external flows.


Assuntos
Encéfalo , Cílios , Animais , Hidrodinâmica , Camundongos , Estresse Mecânico
14.
Soft Matter ; 16(10): 2611-2620, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32103230

RESUMO

A colloidal particle driven by externally actuated rotation can self-propel parallel to a rigid boundary by exploiting the hydrodynamic coupling that surfaces induce between translation and rotation. As such a roller moves along the boundary it generates local vortical flows, which can be used to trap and transport passive cargo particles. However, the details and conditions for this trapping mechanism have not yet been fully understood. Here, we show that the trapping of cargo is accomplished through time-irreversible interactions between the cargo and the boundary, leading to its migration across streamlines into a steady flow vortex next to the roller. The trapping mechanism is explained analytically with a two dimensional model, investigated numerically in three dimensions for a wide range of parameters and is shown to be analogous to the deterministic lateral displacement (DLD) technique used in microfluidics for the separation of differently sized particles. The several geometrical parameters of the problem are analysed and we predict that thin, disc-like rollers offer the most favourable trapping conditions.

15.
Soft Matter ; 16(5): 1259-1269, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31913392

RESUMO

Phoretic mechanisms, whereby gradients of chemical solutes induce surface-driven flows, have recently been used to generate directed propulsion of patterned colloidal particles. When the chemical solutes diffuse slowly, an instability further provides active isotropic particles with a route to self-propulsion by spontaneously breaking the symmetry of the solute distribution. Here we show theoretically that, in a mechanism analogous to Bénard-Marangoni convection, phoretic phenomena can create spontaneous and self-sustained wall-driven mixing flows within a straight, chemically-uniform active channel. Such spontaneous flows do not result in any net pumping for a uniform channel but greatly modify the distribution and transport of the chemical solute. The instability is predicted to occur for a solute Péclet number above a critical value and for a band of finite perturbation wavenumbers. We solve the perturbation problem analytically to characterize the instability, and use both steady and unsteady numerical computations of the full nonlinear transport problem to capture the long-time coupled dynamics of the solute and flow within the channel.

16.
Soft Matter ; 16(5): 1236-1245, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31904757

RESUMO

The dynamics of a spherical chemically-powered synthetic colloidal motor that operates by a self-diffusiophoretic mechanism and has a catalytic domain of arbitrary shape is studied using both continuum theory and particle-based simulations. The motor executes active rotational motion when self-generated concentration gradients and interactions between the chemical species and colloidal motor surface break spherical symmetry. Local variations of chemical reaction rates on the motor catalytic surface with catalytic domain sizes and shapes provide such broken symmetry conditions. A continuum theoretical description of the active rotational motion is given, along with the results of particle-based simulations of the active dynamics. From these results a detailed description of the factors responsible for the active rotational dynamics can be given. Since active rotational motion often plays a significant part in the nature of the collective dynamics of many-motor systems and can be used to control motor motion in targeted cargo transport, our results should find applications beyond those considered here.

17.
Small ; 15(46): e1903379, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31553139

RESUMO

The current understanding of motility through body shape deformation of micro-organisms and the knowledge of fluid flows at the microscale provides ample examples for mimicry and design of soft microrobots. In this work, a 2D spiral is presented that is capable of rotating by non-reciprocal curling deformations. The body of the microswimmer is a ribbon consisting of a thermoresponsive hydrogel bilayer with embedded plasmonic gold nanorods. Such a system allows fast local photothermal heating and nonreciprocal bending deformation of the hydrogel bilayer under nonequilibrium conditions. It is shown that the spiral acts as a spring capable of large deformations thanks to its low stiffness, which is tunable by the swelling degree of the hydrogel and the temperature. Tethering the ribbon to a freely rotating microsphere enables rotational motion of the spiral by stroboscopic irradiation. The efficiency of the rotor is estimated using resistive force theory for Stokes flow. This research demonstrates microscopic locomotion by the shape change of a spiral and may find applications in the field of microfluidics, or soft microrobotics.

18.
Phys Rev Lett ; 122(19): 194503, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144962

RESUMO

Dielectric particles suspended in a weakly conducting fluid are known to spontaneously start rotating under the action of a sufficiently strong uniform dc electric field due to the Quincke rotation instability. This rotation can be converted into translation when the particles are placed near a surface providing useful model systems for active matter. Using a combination of numerical simulations and theoretical modeling, we demonstrate that it is possible to convert this spontaneous Quincke rotation into spontaneous translation in a plane perpendicular to the electric field in the absence of surfaces by relying on geometrical asymmetry instead.

19.
Soft Matter ; 15(12): 2605-2616, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30821805

RESUMO

Experiments have recently shown the feasibility of utilising bacteria as micro-scale robotic devices, with special attention paid to the development of bacteria-driven micro-swimmers taking advantage of built-in actuation and sensing mechanisms of cells. Here we propose a stochastic fluid dynamic model to describe analytically and computationally the dynamics of microscopic particles driven by the motion of surface-attached bacteria undergoing run-and-tumble motion. We compute analytical expressions for the rotational diffusion coefficient, the swimming speed and the effective diffusion coefficient. At short times, the mean squared displacement (MSD) is proportional to the square of the swimming speed, which is independent of the particle size (for fixed density of attached bacteria) and scales linearly with the number of attached bacteria; in contrast, at long times the MSD scales quadratically with the size of the swimmer and is independent of the number of bacteria. We then extend our result to the situation where the surface-attached bacteria undergo chemotaxis within the linear response regime. We demonstrate that bacteria-driven particles are capable of performing artificial chemotaxis, with a chemotactic drift velocity linear in the chemical concentration gradient and independent of the size of the particle. Our results are validated against numerical simulations in the Brownian dynamics limit and will be relevant to the optimal design of micro-swimmers for biomedical applications.

20.
Soft Matter ; 15(7): 1497-1507, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30681697

RESUMO

Control on microscopic scales depends critically on our ability to manipulate interactions with different physical fields. The creation of micro-machines therefore requires us to understand how multiple fields, such as surface capillary or electro-magnetic fields, can be used to produce predictable behaviour. Recently, a spinning micro-raft system was developed that exhibited both static and dynamic self-assembly [Wang et al., Sci. Adv., 2017, 3, e1602522]. These rafts employed both capillary and magnetic interactions and, at a critical driving frequency, would suddenly change from stable orbital patterns to static assembled structures. In this paper, we explain the dynamics of two interacting micro-rafts through a combination of theoretical models and experiments. This is first achieved by identifying the governing physics of the orbital patterns, the assembled structures, and the collapse separately. We find that the orbital patterns are determined by the short range capillary interactions between the disks, while the explanations of the other two behaviours only require the capillary far field. Finally we combine the three models to explain the dynamics of a new micro-raft experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA