Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 133(7): 1255-1265, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18585358

RESUMO

Detection of volatile odorants by olfactory neurons is thought to result from direct activation of seven-transmembrane odorant receptors by odor molecules. Here, we show that detection of the Drosophila pheromone, 11-cis vaccenyl acetate (cVA), is instead mediated by pheromone-induced conformational shifts in the extracellular pheromone-binding protein, LUSH. We show that LUSH undergoes a pheromone-specific conformational change that triggers the firing of pheromone-sensitive neurons. Amino acid substitutions in LUSH that are predicted to reduce or enhance the conformational shift alter sensitivity to cVA as predicted in vivo. One substitution, LUSH(D118A), produces a dominant-active LUSH protein that stimulates T1 neurons through the neuronal receptor components Or67d and SNMP in the complete absence of pheromone. Structural analysis of LUSH(D118A) reveals that it closely resembles cVA-bound LUSH. Therefore, the pheromone-binding protein is an inactive, extracellular ligand converted by pheromone molecules into an activator of pheromone-sensitive neurons and reveals a distinct paradigm for detection of odorants.


Assuntos
Drosophila melanogaster/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Atrativos Sexuais/metabolismo , Acetatos/química , Acetatos/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Modelos Moleculares , Ácidos Oleicos/química , Ácidos Oleicos/metabolismo , Neurônios Receptores Olfatórios/química , Feromônios/química , Feromônios/metabolismo , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Receptores Odorantes/genética , Receptores de Feromônios/metabolismo
2.
Structure ; 20(12): 2174-84, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23142346

RESUMO

c-Jun N-terminal (JNK) family kinases have a common peptide-docking site used by upstream activating kinases, substrates, scaffold proteins, and phosphatases, where the ensemble of bound proteins determines signaling output. Although there are many JNK structures, little is known about mechanisms of allosteric regulation between the catalytic and peptide-binding sites, and the activation loop, whose phosphorylation is required for catalytic activity. Here, we compare three structures of unliganded JNK3 bound to different peptides. These were compared as a class to structures that differ in binding of peptide, small molecule ligand, or conformation of the kinase activation loop. Peptide binding induced an inhibitory interlobe conformer that was reversed by alterations in the activation loop. Structure class analysis revealed the subtle structural mechanisms for allosteric signaling between the peptide-binding site and activation loop. Biochemical data from isothermal calorimetry, fluorescence energy transfer, and enzyme inhibition demonstrated affinity differences among the three peptides that were consistent with structural observations.


Assuntos
Proteína Quinase 10 Ativada por Mitógeno/química , Fator 2 Ativador da Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/química , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/química , Modelos Moleculares , Oligopeptídeos/química , Ligação Proteica , Inibidores de Proteínas Quinases/química , Estrutura Secundária de Proteína , Especificidade por Substrato
3.
Chem Biol ; 19(1): 140-54, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22284361

RESUMO

The mitogen-activated kinases JNK1/2/3 are key enzymes in signaling modules that transduce and integrate extracellular stimuli into coordinated cellular response. Here, we report the discovery of irreversible inhibitors of JNK1/2/3. We describe two JNK3 cocrystal structures at 2.60 and 2.97 Å resolution that show the compounds form covalent bonds with a conserved cysteine residue. JNK-IN-8 is a selective JNK inhibitor that inhibits phosphorylation of c-Jun, a direct substrate of JNK, in cells exposed to submicromolar drug in a manner that depends on covalent modification of the conserved cysteine residue. Extensive biochemical, cellular, and pathway-based profiling establish the selectivity of JNK-IN-8 for JNK and suggests that the compound will be broadly useful as a pharmacological probe of JNK-dependent signal transduction. Potential lead compounds have also been identified for kinases, including IRAK1, PIK3C3, PIP4K2C, and PIP5K3.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína
4.
ACS Chem Biol ; 6(8): 808-18, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21563797

RESUMO

The c-jun N-terminal kinases (JNKs) are responsive to stress stimuli leading to activation of proapoptotic proteins and transcription. Additionally, JNK mitochondrial localization has been reported. To selectively target mitochondrial JNK signaling, we exploited JNK interaction with its mitochondrial scaffold, Sab, using small interfering RNAs (siRNAs) and a cell-permeable peptide corresponding to the KIM1 domain of Sab. Gene silencing and peptide interference of this interaction disrupted JNK translocation to the mitochondria and reduced phosphorylation of Bcl-2 without significant impact on c-Jun phosphorylation or AP-1 transcription. In contrast, the JNK inhibitory peptide (TI-JIP1) prevented these three functions. Tat-Sab(KIM1) selectivity was also demonstrated in anisomycin-stressed HeLa cells where Tat-Sab(KIM1) prevented Bcl-2 phosphorylation, cell death, loss of mitochondrial membrane potential, and superoxide generation but not c-Jun phosphorylation. Conversely, TI-JIP1 prevented all aforementioned stress-induced events. This probe introduces a means to evaluate JNK-mediated events on the mitochondria without intervening in nuclear functions of JNK.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Adaptadoras de Transdução de Sinal/química , Anisomicina/farmacologia , Antibacterianos/farmacologia , Morte Celular/efeitos dos fármacos , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
J Med Chem ; 53(1): 419-31, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19947601

RESUMO

Given the significant body of data supporting an essential role for c-jun-N-terminal kinase (JNK) in neurodegenerative disorders, we set out to develop highly selective JNK inhibitors with good cell potency and good brain penetration properties. The structure-activity relationships (SAR) around a series of aminopyrimidines were evaluated utilizing biochemical and cell-based assays to measure JNK inhibition and brain penetration in mice. Microsomal stability in three species, P450 inhibition, inhibition of generation of reactive oxygen species (ROS), and pharmacokinetics in rats were also measured. Compounds 9g, 9i, 9j, and 9l had greater than 135-fold selectivity over p38, and cell-based IC(50) values < 100 nM. Moreover, compound 9l showed an IC(50) = 0.8 nM for inhibition of ROS and had good pharmacokinetic properties in rats along with a brain-to-plasma ratio of 0.75. These results suggest that biaryl substituted aminopyrimidines represented by compound 9l may serve as the first small molecule inhibitors to test efficacy of JNK inhibitors in neurodegenerative disorders.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Animais , Cristalografia por Raios X , Desenho de Fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA