Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Biol Chem ; 296: 100070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33187980

RESUMO

Lipids in complex, protein-enriched films at air/liquid interfaces reduce surface tension. In the absence of this benefit, the light refracting and immunoprotective tear film on eyes would collapse. Premature collapse, coupled with chronic inflammation compromising visual acuity, is a hallmark of dry eye disease affecting 7 to 10% of individuals worldwide. Although collapse seems independent of mutation (unlike newborn lung alveoli), selective proteome and possible lipidome changes have been noted. These include elevated tissue transglutaminase and consequent inactivation through C-terminal cross-linking of the tear mitogen lacritin, leading to significant loss of lacritin monomer. Lacritin monomer restores homeostasis via autophagy and mitochondrial fusion and promotes basal tearing. Here, we discover that lacritin monomer C-terminal processing, inclusive of cysteine, serine, and metalloproteinase activity, generates cationic amphipathic α-helical proteoforms. Such proteoforms (using synthetic peptide surrogates) act like alveolar surfactant proteins to rapidly bind and stabilize the tear lipid layer. Immunodepletion of C- but not N-terminal proteoforms nor intact lacritin, from normal human tears promotes loss of stability akin to human dry eye tears. Stability of these and dry eye tears is rescuable with C- but not N-terminal proteoforms. Repeated topical application in rabbits reveals a proteoform turnover time of 7 to 33 h with gradual loss from human tear lipid that retains bioactivity without further processing. Thus, the processed C-terminus of lacritin that is deficient or absent in dry eye tears appears to play a key role in preventing tear film collapse and as a natural slow release mechanism that restores epithelial homeostasis.


Assuntos
Síndromes do Olho Seco/fisiopatologia , Proteínas do Olho/metabolismo , Glicoproteínas/fisiologia , Isoformas de Proteínas/fisiologia , Lágrimas/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Glândulas Tarsais/fisiologia , Coelhos
2.
Exp Eye Res ; 225: 109274, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36252655

RESUMO

The cornea and covering tear film are together the 'objective lens' of the eye through which 80% of light is refracted. Despite exposure to a physically harsh and at times infectious or toxic environment, transparency essential for sight is in most cases maintained. Such resiliency makes the avascular cornea a superb model for the exploration of autophagy in the regulation of homeostasis with relevancy to all organs. Nonetheless, missense mutations and inflammation respectively clog or apparently overwhelm autophagic flux to create dystrophies much like in neurodegenerative diseases or further exacerbate inflammation. Here there is opportunity to generate novel topical therapies towards the restoration of homeostasis with potential broad application.


Assuntos
Córnea , Cristalino , Humanos , Córnea/fisiologia , Lágrimas , Autofagia/fisiologia , Inflamação
3.
Adv Exp Med Biol ; 1221: 747-757, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274735

RESUMO

Homeostasis and visual acuity of the surface of the eye are dependent on tears, a thin film comprising at least 1800 different extracellular proteins and numerous species of lipids through which 80% of entering light is refracted at the air interface. Loss of homeostasis in dry eye disease affects 5-7% of the world's population, yet little is known about key molecular players. Our story began as an unbiased screen for regulators of tearing that led to the discovery of homeostasis-restorative 'lacritin', a tear protein whose active form is selectively deficient in dry eye. Heparanase acts as a novel 'on-switch' for lacritin ligation of syndecan-1 necessary to trigger basal tearing, as well as pertussis toxin-sensitive and FOXO-dependent signaling pathways for healing of inflammation-damaged epithelia and restoring epithelial oxidative phosphorylation by mitochondrial fusion downstream of transiently accelerated autophagy. A phase 2 clinical trial has tested the applicability of this mechanism to the resolution of dry eye disease. Results are not yet available. With lacritin proteoforms detected in cerebral spinal fluid, plasma, and urine, the capacity of the lacritin-syndecan-1-heparanase axis to restore homeostasis might have wide systemic relevance to other organs.


Assuntos
Síndromes do Olho Seco/metabolismo , Glucuronidase/metabolismo , Glicoproteínas/metabolismo , Sindecana-1/metabolismo , Síndromes do Olho Seco/terapia , Homeostase , Humanos , Lágrimas/metabolismo
4.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859014

RESUMO

Lacripep is a therapeutic peptide derived from the human tear protein, Lacritin. Lacripep interacts with syndecan-1 and induces mitogenesis upon the removal of heparan sulfates (HS) that are attached at the extracellular domain of syndecan-1. The presence of HS is a prerequisite for the syndecan-1 clustering that stimulates exosome biogenesis and release. Therefore, syndecan-1-mediated mitogenesis versus HS-mediated exosome biogenesis are assumed to be mutually exclusive. This study introduces a biosynthesized fusion between Lacripep and an elastin-like polypeptide named LP-A96, and evaluates its activity on cell motility enhancement versus exosome biogenesis. LP-A96 activates both downstream pathways in a dose-dependent manner. HCE-T cells at high confluence treated with 1 µM LP-A96 enhanced cell motility equipotent to Lacripep. However, cells at low density treated with 1 µM LP-A96 generated a 210-fold higher number of exosomes compared to those treated at low density with Lacripep. As monovalent Lacripep is capable of enhancing cell motility but not exosome biogenesis, activation of exosome biogenesis by LP-A96 not only suggests its utility as a novel molecular tool to study the Lacritin biology in the corneal epithelium but also implies activity as a potential therapeutic peptide that can further improve ocular surface health through the induction of exosomes.


Assuntos
Epitélio Corneano/citologia , Exossomos/metabolismo , Glicoproteínas/química , Peptídeos/farmacologia , Cálcio/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Elastina/química , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Humanos , Peptídeos/química , Transdução de Sinais/efeitos dos fármacos , Sindecana-1/metabolismo
5.
Exp Eye Res ; 184: 101-106, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31009613

RESUMO

Herpes stromal keratitis (HSK) is a chronic immunoinflammatory condition which develops in response to recurrent herpes simplex virus-1 (HSV-1) infection of the cornea. Patients with HSK often demonstrate the concurrence of corneal desiccation and the loss of blink reflex. However, the relationship between severity of HSK, level of basal tears and inflammation of the lacrimal gland is mostly unexplored. In this study, we compared these variables in extraorbital lacrimal gland (EoLG) after corneal HSV-1 infection in the C57BL/6J mouse model. Our results showed a significant reduction in the volume of tears in infected eyes during the development of HSK. Extensive architectural damage to EoLG, presumably caused by a massive influx of interferon-gamma secreting T cells, was observed during clinical disease period of HSK. A positive correlation between the decrease in tear volume, severity of HSK and the damage to EoLG were evident in infected mice. The presence of infectious virus measured in EoLG during pre-clinical, but not clinical disease period of HSK, suggested that viral cytopathic effects are not the major contributors of extensive damage seen in EoLG. Furthermore, topical administration of lacritin peptide delayed but did not prevent the decrease in tears in HSV-1 infected mice, and had no significant effect in either reducing the severity of HSK or T cell infiltration in EoLG of infected mice. Together, our results showed an interplay between the severity of HSK, inflammation of EoLG, and the reduced level of tears after corneal HSV-1 infection.


Assuntos
Substância Própria/patologia , Dacriocistite/fisiopatologia , Modelos Animais de Doenças , Ceratite Herpética/fisiopatologia , Animais , Linfócitos T CD4-Positivos/imunologia , Dacriocistite/tratamento farmacológico , Dacriocistite/imunologia , Dacriocistite/virologia , Feminino , Glicoproteínas/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/fisiopatologia , Inflamação/virologia , Ceratite Herpética/tratamento farmacológico , Ceratite Herpética/imunologia , Ceratite Herpética/virologia , Camundongos , Camundongos Endogâmicos C57BL , Lágrimas/metabolismo
6.
Exp Eye Res ; 144: 4-13, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26318608

RESUMO

Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin.


Assuntos
Autofagia/fisiologia , Túnica Conjuntiva/fisiologia , Córnea/fisiologia , Síndromes do Olho Seco/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas/metabolismo , Animais , Humanos
7.
J Biol Chem ; 289(32): 22172-82, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24942736

RESUMO

Antimicrobial peptides are important as the first line of innate defense, through their tendency to disrupt bacterial membranes or intracellular pathways and potentially as the next generation of antibiotics. How they protect wet epithelia is not entirely clear, with most individually inactive under physiological conditions and many preferentially targeting Gram-positive bacteria. Tears covering the surface of the eye are bactericidal for Gram-positive and -negative bacteria. Here we narrow much of the bactericidal activity to a latent C-terminal fragment in the prosecretory mitogen lacritin and report that the mechanism combines membrane permeabilization with rapid metabolic changes, including reduced levels of dephosphocoenzyme A, spermidine, putrescine, and phosphatidylethanolamines and elevated alanine, leucine, phenylalanine, tryptophan, proline, glycine, lysine, serine, glutamate, cadaverine, and pyrophosphate. Thus, death by metabolic stress parallels cellular attempts to survive. Cleavage-dependent appearance of the C-terminal cationic amphipathic α-helix is inducible within hours by Staphylococcus epidermidis and slowly by another mechanism, in a chymotrypsin- or leupeptin protease-inhibitable manner. Although bactericidal at low micromolar levels, within a biphasic 1-10 nM dose optimum, the same domain is mitogenic and cytoprotective for epithelia via a syndecan-1 targeting mechanism dependent on heparanase. Thus, the C terminus of lacritin is multifunctional by dose and proteolytic processing and appears to play a key role in the innate protection of the eye, with wider potential benefit elsewhere as lacritin flows from exocrine secretory cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Lágrimas/imunologia , Lágrimas/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/imunologia , Escherichia coli/imunologia , Escherichia coli/metabolismo , Glicoproteínas/imunologia , Humanos , Imunidade Inata , Metaboloma , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Staphylococcus epidermidis/imunologia , Staphylococcus epidermidis/patogenicidade
8.
J Biol Chem ; 288(17): 12090-101, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23504321

RESUMO

Cell surface heparan sulfate (HS) proteoglycans shape organogenesis and homeostasis by capture and release of morphogens through mechanisms largely thought to exclude the core protein domain. Nevertheless, heparanase deglycanation of the N-terminal HS-rich domain of syndecan-1 (SDC1), but not SDC2 or -4, is a prerequisite for binding of the prosecretory mitogen lacritin (Ma, P., Beck, S. L., Raab, R. W., McKown, R. L., Coffman, G. L., Utani, A., Chirico, W. J., Rapraeger, A. C., and Laurie, G. W. (2006) Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J. Cell Biol. 174, 1097-1106). We now report that the conserved and hydrophobic GAGAL domain in SDC1, adjacent to predicted HS substitution sites, is necessary to ligate and substantially enhance the α-helicity of the amphipathic C terminus of lacritin. Swapping out GAGAL for GADED in SDC2 or for GDLDD in SDC4 (both less hydrophobic) abrogated binding. HS and chondroitin sulfate are also essential. Both are detected in the N terminus, and when incubated with antibodies HS4C3 (anti-HS) or IO3H10 (anti-chondroitin sulfate), binding was absent, as occurred when all three N-terminal glycosaminoglycan substitution sites were mutated to alanine or when cells were treated with 4-methylumbelliferyl-ß-d-xylopyranoside or chlorate to suppress glycosaminoglycan substitution or sulfation, respectively. SDC1 interacts with the hydrophobic face of lacritin via Leu-108/Leu-109/Phe-112 as well as with Glu-103/Lys-107 and Lys-111 of the largely cationic face. Carving a hybrid hydrophobic/electrostatic docking site out of SDC1 in a manner dependent on endogenous heparanase is a dynamic process appropriate for subtle or broad epithelial regulation in morphogenesis, health, and disease.


Assuntos
Sulfatos de Condroitina/metabolismo , Glucuronidase/metabolismo , Glicoproteínas/metabolismo , Heparitina Sulfato/metabolismo , Sindecana-1/metabolismo , Substituição de Aminoácidos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/genética , Glucuronidase/química , Glucuronidase/genética , Glicoproteínas/química , Glicoproteínas/genética , Células HEK293 , Heparitina Sulfato/química , Heparitina Sulfato/genética , Humanos , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína , Sindecana-1/química , Sindecana-1/genética
9.
J Biol Chem ; 288(25): 18146-61, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23640897

RESUMO

Homeostasis is essential for cell survival. However, homeostatic regulation of surface epithelia is poorly understood. The eye surface, lacking the cornified barrier of skin, provides an excellent model. Tears cover the surface of the eye and are deficient in dry eye, the most common eye disease affecting at least 5% of the world's population. Only a tiny fraction of the tear proteome appears to be affected, including lacritin, an epithelium-selective mitogen that promotes basal tearing when topically applied to rabbit eyes. Here we show that homeostasis of cultured corneal epithelia is entirely lacritin-dependent and elucidate the mechanism as a rapid autophagic flux to promptly restore cellular metabolism and mitochondrial fusion in keeping with the short residence time of lacritin on the eye. Accelerated flux appears to be derived from lacritin-stimulated acetylation of FOXO3 as a novel ligand for ATG101 and coupling of stress-acetylated FOXO1 with ATG7 (which remains uncoupled without lacritin) and be sufficient to selectively divert huntingtin mutant Htt103Q aggregates largely without affecting non-aggregated Htt25Q. This is in keeping with stress as a prerequisite for lacritin-stimulated autophagy. Lacritin targets the cell surface proteoglycan syndecan-1 via its C-terminal amino acids Leu(108)-Leu(109)-Phe(112) and is also available in saliva, plasma, and lung lavage. Thus, lacritin may promote epithelial homeostasis widely.


Assuntos
Autofagia/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Glicoproteínas/farmacologia , Metaboloma/efeitos dos fármacos , Sequência de Aminoácidos , Proteína 7 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Células Cultivadas , Células Epiteliais/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Glicoproteínas/química , Glicoproteínas/genética , Homeostase/efeitos dos fármacos , Humanos , Proteína Huntingtina , Interferon gama/farmacologia , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/farmacologia , Interferência de RNA , Proteínas Recombinantes/farmacologia , Sindecana-1/genética , Sindecana-1/metabolismo , Lágrimas/química , Lágrimas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
10.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464199

RESUMO

Discovering new bacterial signaling pathways offers unique antibiotic strategies. Here, through an unbiased resistance screen of 3,884 gene knockout strains, we uncovered a previously unknown non-lytic bactericidal mechanism that sequentially couples three transporters and downstream transcription to lethally suppress respiration of the highly virulent P. aeruginosa strain PA14 - one of three species on the WHO's 'Priority 1: Critical' list. By targeting outer membrane YaiW, cationic lacritin peptide 'N-104' translocates into the periplasm where it ligates outer loops 4 and 2 of the inner membrane transporters FeoB and PotH, respectively, to suppress both ferrous iron and polyamine uptake. This broadly shuts down transcription of many biofilm-associated genes, including ferrous iron-dependent TauD and ExbB1. The mechanism is innate to the surface of the eye and is enhanced by synergistic coupling with thrombin peptide GKY20. This is the first example of an inhibitor of multiple bacterial transporters.

11.
Exp Eye Res ; 117: 39-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23769845

RESUMO

Tear proteins are potential biomarkers, drug targets, and even biotherapeutics. As a biotherapeutic, a recombinant tear protein might physiologically rescue the ocular surface when a deficiency is detected. Such a strategy pays more attention to the natural prosecretory and protective properties of the tear film and seeks to alleviate symptoms by addressing cause, rather than the current palliative, non-specific and temporary approaches. Only a handful of tear proteins appear to be selectively downregulated in dry eye, the most common eye disease. Lacritin and lipocalin-1 are two tear proteins selectively deficient in dry eye. Both proteins influence ocular surface health. Lacritin is a prosecretory mitogen that promotes basal tearing when applied topically. Levels of active monomeric lacritin are negatively regulated by tear tissue transglutaminase, whose expression is elevated in dry eye with ocular surface inflammation. Lipocalin-1 is the master lipid sponge of the ocular surface, without which residual lipids could interfere with epithelial wetting. It also is a carrier for vitamins and steroid hormones, and is a key endonuclease. Accumulation of DNA in tears is thought to be proinflammatory. Functions of these and other tear proteins may be influenced by protein-protein interactions. Here we discuss new advances in lacritin biology and provide an overview on lipocalin-1, and newly identified members of the tear proteome.


Assuntos
Síndromes do Olho Seco/terapia , Proteínas do Olho/metabolismo , Glicoproteínas/metabolismo , Lipocalina 1/metabolismo , Proteoma/metabolismo , Síndromes do Olho Seco/metabolismo , Humanos
12.
Cornea ; 42(7): 847-857, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35942530

RESUMO

PURPOSE: The purpose of this study was to assess the safety, tolerability, dosing, and efficacy of the active 19 amino acid fragment of lacritin (Lacripep), a broad regulator of ocular surface homeostasis, in the treatment of ocular surface disease associated with primary Sjögren syndrome. METHODS: Two hundred four subjects were randomized to receive vehicle, 22 µM Lacripep, or 44 µM Lacripep 3 times daily for 28 days, preceded by a 14-day run-in and followed by 14-day washout. Outcome measures were corneal fluorescein staining (CFS), lissamine conjunctival staining, Schirmer with anesthesia, tear break-up time, SANDE scoring, and visual analog scale assessment of symptoms. RESULTS: This study established the safety and tolerability of topical treatment with Lacripep in patients with primary Sjögren syndrome. There were few adverse events: Only mild irritation was found in less than 3 percent of patients dosed with Lacripep. Total CFS and Eye Dryness Score were not significantly changed at day 28. Post hoc analysis of patients with Eye Dryness Severity scores of 60 or greater at baseline revealed significant improvements in inferior CFS at 14 and 28 days and complaints of burning and stinging at 14 days. Significant improvement in regional lissamine conjunctival staining was seen at 14 and 28 days. CONCLUSIONS: This first-in-human study of Lacripep in patients with primary Sjögren syndrome demonstrated clinically significant improvements in specific signs and symptoms on which to base future studies. This study established safety and tolerability and potential metrics of efficacy in patients with moderate to severe disease. Further work on appropriate dosing and concentration is ongoing.


Assuntos
Síndromes do Olho Seco , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/tratamento farmacológico , Síndromes do Olho Seco/diagnóstico , Lágrimas/metabolismo , Túnica Conjuntiva/metabolismo , Administração Tópica , Soluções Oftálmicas/uso terapêutico
13.
Autophagy Rep ; 2(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034386

RESUMO

Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.

15.
J Cell Biol ; 174(7): 1097-106, 2006 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-16982797

RESUMO

Cell surface heparan sulfate (HS) proteoglycans are carbohydrate-rich regulators of cell migratory, mitogenic, secretory, and inflammatory activity that bind and present soluble heparin-binding growth factors (e.g., fibroblast growth factor, Wnt, Hh, transforming growth factor beta, amphiregulin, and hepatocyte growth factor) to their respective signaling receptors. We demonstrate that the deglycanated core protein of syndecan-1 (SDC1) and not HS chains nor SDC2 or -4, appears to target the epithelial selective prosecretory mitogen lacritin. An important and novel step in this mechanism is that binding necessitates prior partial or complete removal of HS chains by endogenous heparanase. This limits lacritin activity to sites where heparanase appears to predominate, such as sites of exocrine cell migration, secretion, renewal, and inflammation. Binding is mutually specified by lacritin's C-terminal mitogenic domain and SDC1's N terminus. Heparanase modification of the latter transforms a widely expressed HS proteoglycan into a highly selective surface-binding protein. This novel example of cell specification through extracellular modification of an HS proteoglycan has broad implications in development, homeostasis, and disease.


Assuntos
Células Epiteliais/metabolismo , Glucuronidase/farmacologia , Glicoproteínas/metabolismo , Substâncias de Crescimento/metabolismo , Glicoproteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Proteoglicanas/metabolismo , Linhagem Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Glicoproteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Proteoglicanas/efeitos dos fármacos , Sindecana-1 , Sindecanas
16.
J Cell Biol ; 174(5): 689-700, 2006 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-16923831

RESUMO

Renewal of nongermative epithelia is poorly understood. The novel mitogen "lacritin" is apically secreted by several nongermative epithelia. We tested 17 different cell types and discovered that lacritin is preferentially mitogenic or prosecretory for those types that normally contact lacritin during its glandular outward flow. Mitogenesis is dependent on lacritin's C-terminal domain, which can form an alpha-helix with a hydrophobic face, as per VEGF's and PTHLP's respective dimerization or receptor-binding domain. Lacritin targets downstream NFATC1 and mTOR. The use of inhibitors or siRNA suggests that lacritin mitogenic signaling involves Galpha(i) or Galpha(o)-PKCalpha-PLC-Ca2+-calcineurin-NFATC1 and Galpha(i) or Galpha(o)-PKCalpha-PLC-phospholipase D (PLD)-mTOR in a bell-shaped, dose-dependent manner requiring the Ca2+ sensor STIM1, but not TRPC1. This pathway suggests the placement of transiently dephosphorylated and perinuclear Golgi-translocated PKCalpha upstream of both Ca2+ mobilization and PLD activation in a complex with PLCgamma2. Outward flow of lacritin from secretory cells through ducts may generate a proliferative/secretory field as a different unit of cellular renewal in nongermative epithelia where luminal structures predominate.


Assuntos
Proliferação de Células , Células Epiteliais/efeitos dos fármacos , Glicoproteínas/farmacologia , Substâncias de Crescimento/farmacologia , Fatores de Transcrição NFATC/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Fosfolipase D/metabolismo , Conformação Proteica , Transporte Proteico , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR
17.
Transl Vis Sci Technol ; 9(9): 13, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32879769

RESUMO

Purpose: Lacritin is a tear glycoprotein with pro-tearing and pro-ocular surface homeostasis activities that is selectively deficient in most dry eye tears. Proteoforms include an active monomer, inactive polymers, and a splice variant termed lacritin-c. Quantitation of the different proteoforms of tear lacritin may provide a diagnostic tool for ocular diseases. Here, we report the development of an immunoassay for the quantification of multiple lacritin proteoforms in human tear samples. Methods: Basal tears collected on Schirmer test strips with anesthesia were eluted by diffusion and centrifugation under optimized conditions. Tear protein concentrations were determined, and 2.56 µg of each sample was separated by SDS-PAGE followed by western blot analysis. Blots were challenged with anti-Pep Lac N-term antibodies. Detection was with fluorescent secondary antibodies visualized by the LI-COR Odyssey CLx imaging system and quantified with standard curves of recombinant lacritin. Results: The percent total lacritin (ng lacritin/100 ng total protein) ranged from 1.8% to 14.8%. Monomer, lacritin-c, and polymer proteoform percent total protein ranged from 1.1% to 6.3%, 0.3% to 5.4%, and 0.7% to 5.7%, respectively. Monomer lacritin was detected at concentrations of 6 to 176 µM, with lacritin-c and polymer proteoforms at 2 to 46 µM and 1 to 23 µM, respectively. Conclusions: This assay greatly exceeds the power and sensitivity of our prior lacritin enzyme-linked immunosorbent assay that was not capable of distinguishing monomer from polymers and lacritin-c proteoforms. Translational Relevance: A new method has been developed to quantitate multiple proteoforms of tear lacritin in preparation for analyses of samples from clinical trials.


Assuntos
Síndromes do Olho Seco , Proteínas do Olho , Western Blotting , Proteínas do Olho/genética , Glicoproteínas , Humanos , Lágrimas
18.
Exp Eye Res ; 88(5): 848-58, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18840430

RESUMO

The lacrimal functional unit (LFU) is defined by the 2007 International Dry Eye WorkShop as 'an integrated system comprising the lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and lids, and the sensory and motor nerves that connect them'. The LFU maintains a healthy ocular surface primarily through a properly functioning tear film that provides protection, lubrication, and an environment for corneal epithelial cell renewal. LFU cells express thousands of proteins. Over 200 new LFU proteins have been discovered in the last decade. Lacritin is a new LFU-specific growth factor in human tears that flows through ducts to target corneal epithelial cells on the ocular surface. When applied topically in rabbits, lacritin appears to increase the volume of basal tear secretion. Lacritin is one of only a handful of tear proteins preliminarily reported to be downregulated in blepharitis and in two dry eye syndromes. Computational analysis predicts an ordered C-terminal domain that binds the corneal epithelial cell surface proteoglycan syndecan-1 (SDC1) and is required for lacritin's low nanomolar mitogenic activity. The lacritin-binding site on the N-terminus of SDC1 is exposed by heparanase. Heparanase is constitutively expressed by the corneal epithelium and appears to be a normal constituent of tears. Binding triggers rapid signaling to downstream NFAT and mTOR. A wealth of other new proteins, originally designated as hypothetical when first identified by genomic sequencing, are expressed by the human LFU including: ALS2CL, ARHGEF19, KIAA1109, PLXNA1, POLG, WIPI1 and ZMIZ2. Their demonstrated or implied roles in human genetic disease or basic cellular functions are fuel for new investigation. Addressing topical areas in ocular surface physiology with new LFU proteins may reveal interesting new biological mechanisms and help get to the heart of ocular surface dysfunction.


Assuntos
Proteínas do Olho/fisiologia , Glicoproteínas/fisiologia , Aparelho Lacrimal/metabolismo , Animais , Doenças Autoimunes/genética , Córnea/metabolismo , Síndromes do Olho Seco/metabolismo , Proteínas do Olho/química , Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade
19.
Pharmaceutics ; 11(5)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067782

RESUMO

Contact lenses are widely prescribed for vision correction, and as such they are an attractive platform for drug delivery to the anterior segment of the eye. This manuscript explores a novel strategy to drive the reversible adsorption of peptide-based therapeutics using commercially available contact lenses. To accomplish this, thermo-sensitive elastin-like polypeptides (ELPs) alone or tagged with a candidate ocular therapeutic were characterized. For the first time, this manuscript demonstrates that Proclear CompatiblesTM contact lenses are a suitable platform for ELP adsorption. Two rhodamine-labelled ELPs, V96 (thermo-sensitive) and S96 (thermo-insensitive), were employed to test temperature-dependent association to the contact lenses. During long-term release into solution, ELP coacervation significantly modulated the release profile whereby more than 80% of loaded V96 retained with a terminal half-life of ~4 months, which was only 1-4 days under solubilizing conditions. A selected ocular therapeutic candidate lacritin-V96 fusion (LV96), either free or lens-bound LV96, was successfully transferred to HCE-T cells. These data suggest that ELPs may be useful to control loading or release from certain formulations of contact lenses and present a potential for this platform to deliver a biologically active peptide to the ocular surface via contact lenses.

20.
Ocul Surf ; 15(3): 366-403, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28736338

RESUMO

The members of the Tear Film Subcommittee reviewed the role of the tear film in dry eye disease (DED). The Subcommittee reviewed biophysical and biochemical aspects of tears and how these change in DED. Clinically, DED is characterized by loss of tear volume, more rapid breakup of the tear film and increased evaporation of tears from the ocular surface. The tear film is composed of many substances including lipids, proteins, mucins and electrolytes. All of these contribute to the integrity of the tear film but exactly how they interact is still an area of active research. Tear film osmolarity increases in DED. Changes to other components such as proteins and mucins can be used as biomarkers for DED. The Subcommittee recommended areas for future research to advance our understanding of the tear film and how this changes with DED. The final report was written after review by all Subcommittee members and the entire TFOS DEWS II membership.


Assuntos
Lágrimas , Síndromes do Olho Seco , Olho , Humanos , Ceratoconjuntivite Seca , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA