Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 587(7833): 270-274, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32726801

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the rapidly unfolding coronavirus disease 2019 (COVID-19) pandemic1,2. Clinical manifestations of COVID-19 vary, ranging from asymptomatic infection to respiratory failure. The mechanisms that determine such variable outcomes remain unresolved. Here we investigated CD4+ T cells that are reactive against the spike glycoprotein of SARS-CoV-2 in the peripheral blood of patients with COVID-19 and SARS-CoV-2-unexposed healthy donors. We detected spike-reactive CD4+ T cells not only in 83% of patients with COVID-19 but also in 35% of healthy donors. Spike-reactive CD4+ T cells in healthy donors were primarily active against C-terminal epitopes in the spike protein, which show a higher homology to spike glycoproteins of human endemic coronaviruses, compared with N-terminal epitopes. Spike-protein-reactive T cell lines generated from SARS-CoV-2-naive healthy donors responded similarly to the C-terminal region of the spike proteins of the human endemic coronaviruses 229E and OC43, as well as that of SARS-CoV-2. This results indicate that spike-protein cross-reactive T cells are present, which were probably generated during previous encounters with endemic coronaviruses. The effect of pre-existing SARS-CoV-2 cross-reactive T cells on clinical outcomes remains to be determined in larger cohorts. However, the presence of spike-protein cross-reactive T cells in a considerable fraction of the general population may affect the dynamics of the current pandemic, and has important implications for the design and analysis of upcoming trials investigating COVID-19 vaccines.


Assuntos
Betacoronavirus/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Linhagem Celular , Coronavirus Humano 229E/imunologia , Coronavirus Humano NL63/imunologia , Coronavirus Humano OC43/imunologia , Reações Cruzadas , Epitopos de Linfócito T/imunologia , Feminino , Voluntários Saudáveis , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
2.
J Immunol ; 208(5): 1001-1005, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121642

RESUMO

Advanced age is a main risk factor for severe COVID-19. However, low vaccination efficacy and accelerated waning immunity have been reported in this age group. To elucidate age-related differences in immunogenicity, we analyzed human cellular, serological, and salivary SARS-CoV-2 spike glycoprotein-specific immune responses to the BNT162b2 COVID-19 vaccine in old (69-92 y) and middle-aged (24-57 y) vaccinees compared with natural infection (COVID-19 convalescents, 21-55 y of age). Serological humoral responses to vaccination excee-ded those of convalescents, but salivary anti-spike subunit 1 (S1) IgA and neutralizing capacity were less durable in vaccinees. In old vaccinees, we observed that pre-existing spike-specific CD4+ T cells are associated with efficient induction of anti-S1 IgG and neutralizing capacity in serum but not saliva. Our results suggest pre-existing SARS-CoV-2 cross-reactive CD4+ T cells as a predictor of an efficient COVID-19 vaccine-induced humoral immune response in old individuals.


Assuntos
Envelhecimento/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacina BNT162/imunologia , Linfócitos T CD4-Positivos/imunologia , SARS-CoV-2/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/imunologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Casas de Saúde , Saliva/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Eficácia de Vacinas , Adulto Jovem
3.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466904

RESUMO

Reconstruction of segmental bone defects by autologous bone grafting is still the standard of care but presents challenges including anatomical availability and potential donor site morbidity. The process of 3D bioprinting, the application of 3D printing for direct fabrication of living tissue, opens new possibilities for highly personalized tissue implants, making it an appealing alternative to autologous bone grafts. One of the most crucial hurdles for the clinical application of 3D bioprinting is the choice of a suitable cell source, which should be minimally invasive, with high osteogenic potential, with fast, easy expansion. In this study, mesenchymal progenitor cells were isolated from clinically relevant human bone biopsy sites (explant cultures from alveolar bone, iliac crest and fibula; bone marrow aspirates; and periosteal bone shaving from the mastoid) and 3D bioprinted using projection-based stereolithography. Printed constructs were cultivated for 28 days and analyzed regarding their osteogenic potential by assessing viability, mineralization, and gene expression. While viability levels of all cell sources were comparable over the course of the cultivation, cells obtained by periosteal bone shaving showed higher mineralization of the print matrix, with gene expression data suggesting advanced osteogenic differentiation. These results indicate that periosteum-derived cells represent a highly promising cell source for translational bioprinting of bone tissue given their superior osteogenic potential as well as their minimally invasive obtainability.


Assuntos
Células da Medula Óssea/metabolismo , Transplante Ósseo/métodos , Osso e Ossos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Biossíntese de Proteínas , Engenharia Tecidual/métodos , Adulto , Bioimpressão/métodos , Células da Medula Óssea/citologia , Osso e Ossos/citologia , Diferenciação Celular/genética , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Impressão Tridimensional , Alicerces Teciduais , Transplante Autólogo
4.
Int J Hyperthermia ; 32(5): 583-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27145692

RESUMO

PURPOSE: Bipolar radio-frequency-induced thermofusion (BiRTh) of intestinal tissue might replace conventional stapling devices which are associated with technical and functional complications. Previous results of our study group confirmed the feasibility to fuse intestinal tissue using BiRTh-induced thermofusion ex vivo. The aim of this study was now to evaluate the efficacy of fusing intestinal tissue in vivo by BiRTh-induced thermofusion. MATERIALS AND METHODS: In male Wistar rats a blind bowel originating from the caecum was closed either by BiRTh (n = 24) or conventional suture (n = 16). At 6 h, 48 h, 4 days, and 2 weeks after the procedure caecum bursting pressure was measured to compare both groups. RESULTS: In total 18 of 21 (85.7%) thermofused and 15 of 16 (93.7%) sutured cecal stumps were primarily tight and leakage-proof (p > 0.05). The operative time was comparable in both groups without significant differences. Both groups showed increases in bursting pressure over the post-operative period. The mean bursting pressure for thermofusion was 47.8, 48.3, 55.2, and 68.0 mmHg, compared to 69.8, 51.5, 70.0 and 71.0 mmHg in the hand-sutured group (p > 0.05) after 6 h, 48 h, 4 days, and 2 weeks, respectively. CONCLUSION: These results suggest that BiRTh-induced thermofusion is a safe and feasible method for fusing intestinal tissue in this experimental in vivo model and could be an innovative approach for achieving gastrointestinal anastomoses.


Assuntos
Anastomose Cirúrgica/métodos , Intestinos/cirurgia , Ondas de Rádio , Animais , Temperatura Alta , Masculino , Pressão , Ratos Wistar , Suturas
5.
Altern Lab Anim ; 40(5): 235-57, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23215661

RESUMO

Various factors, including the phylogenetic distance between laboratory animals and humans, the discrepancy between current in vitro systems and the human body, and the restrictions of in silico modelling, have generated the need for new solutions to the ever-increasing worldwide dilemma of substance testing. This review provides a historical sketch on the accentuation of this dilemma, and highlights fundamental limitations to the countermeasures taken so far. It describes the potential of recently-introduced microsystems to emulate human organs in 'organ-on-a-chip' devices. Finally, it focuses on an in-depth analysis of the first devices that aimed to mimic human systemic organ interactions in 'human-on-a-chip' systems. Their potential to replace acute systemic toxicity testing in animals, and their inability to provide alternatives to repeated dose long-term testing, are discussed. Inspired by the latest discoveries in human biology, tissue engineering and micro-systems technology, this review proposes a paradigm shift to overcome the apparent challenges. A roadmap is outlined to create a new homeostatic level of biology in 'human-on-a-chip' systems in order to, in the long run, replace systemic repeated dose safety evaluation and disease modelling in animals.


Assuntos
Alternativas aos Testes com Animais , Animais de Laboratório , Técnicas Analíticas Microfluídicas/métodos , Testes de Toxicidade/métodos , Animais , Humanos , Pesquisa com Células-Tronco
6.
Exp Dermatol ; 20(4): 361-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21355885

RESUMO

Hair follicle cycling is driven by epithelial-mesenchymal interactions (EMI), which require extracellular matrix (ECM) modifications to control the crosstalk between key epithelial- and mesenchymal-derived growth factors and cytokines. The exact roles of these ECM modifications in hair cycle-associated EMI are still unknown. Here, we used differential microarray analysis of laser capture-microdissected human scalp hair follicles (HF) to identify new ECM components that distinguish fibroblasts from the connective tissue sheath (CTS) from those of the follicular dermal papilla (DP). These analyses provide the first evidence that normal human CTS fibroblasts are characterized by the selective in situ-transcription of cartilage oligomeric matrix protein (COMP). Following this up on the protein level, COMP was found to be hair cycle-dependent, suggesting critical role in this process: COMP is expressed during telogen and early anagen at regions of EMI and is degraded during catagen (only the CTS adjacent to the bulge remains COMP+ during catagen). Notably, COMP gene expression in vitro suggests direct correlation with the expression of TGFß2 in CTS fibroblasts. This raises the question whether COMP expression undergoes regulation by transforming growth factor, beta (TGFß) signalling. The intrafollicular COMP expression suggests to be functionally important and deserves further scrutiny in hair biology as indicated by the fact that altered COMP expression might be associated with scant fine hair in the case of some chondrodysplasia and scleroderma patients. Together these results reveal for the first time that COMP is part of the ECM and suggests its important role in normal human HF biology.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Folículo Piloso/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína de Matriz Oligomérica de Cartilagem , Células Cultivadas , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/genética , Fibroblastos/citologia , Expressão Gênica , Glicoproteínas/genética , Humanos , Proteínas Matrilinas , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/genética
7.
Langenbecks Arch Surg ; 396(4): 529-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21347687

RESUMO

PURPOSE: In recent years, vessel sealing has become a well-established method in surgical practice for sealing and transecting vessels. Since this technology depends on the fusion of collagen fibers abundantly present in the intestinal wall, it should also be possible to create intestinal anastomoses by thermofusion. Bipolar radiofrequency-induced thermofusion of intestinal tissue may replace traditionally used staples or sutures in the future. The aim of this study was to evaluate the feasibility of fusing intestinal tissue ex vivo by bipolar radiofrequency-induced thermofusion. MATERIALS AND METHODS: An experimental setup for temperature-controlled bipolar radiofrequency-induced thermofusion of porcine (n = 30) and rat (n = 18) intestinal tissue was developed. Colon samples were harvested and then anastomosed, altering compressive pressure to examine its influence on anastomotic bursting pressure during radiofrequency-induced anastomotic fusion. For comparison, mechanical stapler anastomoses of porcine colonic samples and conventional suturing of rat colonic samples identical to those used for fusion experiments were prepared, and burst pressure was measured. RESULTS: All thermofused colonic anastomoses were primarily tight and leakage proof. For porcine colonic samples, an optimal interval of compressive pressure (1,125 mN/mm(2)) with respect to a high amount of burst pressure (41 mmHg) was detected. The mean bursting pressure for mechanical stapler anastomosis was 60.7 mmHg and did not differ from the thermofusion (p = 0.15). Furthermore, the mean bursting pressure for thermofusion of rat colonic samples was up to 69.5 mmHg for a compressive pressure of 140 mN/mm(2). CONCLUSION: These results confirm the feasibility to create experimental intestinal anastomoses using bipolar radiofrequency-induced thermofusion. The stability of the induced thermofusion showed no differences when compared to that of conventional anastomoses. Bipolar radiofrequency-induced thermofusion of intestinal tissue represents an innovative approach for achieving gastrointestinal anastomoses.


Assuntos
Anastomose Cirúrgica/métodos , Colo/cirurgia , Eletrocoagulação , Animais , Força Compressiva , Estudos de Viabilidade , Ratos , Técnicas de Sutura , Suínos , Resistência à Tração
8.
Front Med (Lausanne) ; 8: 728866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589503

RESUMO

The first concepts for reproducing human systemic organismal biology in vitro were developed over 12 years ago. Such concepts, then called human- or body-on-a-chip, claimed that microphysiological systems would become the relevant technology platform emulating the physiology and morphology of human organisms at the smallest biologically acceptable scale in vitro and, therefore, would enable the selection of personalized therapies for any patient at unprecedented precision. Meanwhile, the first human organoids-stem cell-derived complex three-dimensional organ models that expand and self-organize in vitro-have proven that in vitro self-assembly of minute premature human organ-like structures is feasible, once the respective stimuli of ontogenesis are provided to human stem cells. Such premature organoids can precisely reflect a number of distinct physiological and pathophysiological features of their respective counterparts in the human body. We now develop the human-on-a-chip concepts of the past into an organismoid theory. We describe the current concept and principles to create a series of organismoids-minute, mindless and emotion-free physiological in vitro equivalents of an individual's mature human body-by an artificially short process of morphogenetic self-assembly mimicking an individual's ontogenesis from egg cell to sexually mature organism. Subsequently, we provide the concept and principles to maintain such an individual's set of organismoids at a self-sustained functional healthy homeostasis over very long time frames in vitro. Principles how to perturb a subset of healthy organismoids by means of the natural or artificial induction of diseases are enrolled to emulate an individual's disease process. Finally, we discuss using such series of healthy and perturbed organismoids in predictively selecting, scheduling and dosing an individual patient's personalized therapy or medicine precisely. The potential impact of the organismoid theory on our healthcare system generally and the rapid adoption of disruptive personalized T-cell therapies particularly is highlighted.

9.
Sci Rep ; 11(1): 19833, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615948

RESUMO

Radiotherapy of head and neck squamous cell carcinoma can lead to long-term complications like osteoradionecrosis, resulting in severe impairment of the jawbone. Current standard procedures require a 6-month wait after irradiation before dental reconstruction can begin. A comprehensive characterization of the irradiation-induced molecular and functional changes in bone cells could allow the development of novel strategies for an earlier successful dental reconstruction in patients treated by radiotherapy. The impact of ionizing radiation on the bone-forming alveolar osteoblasts remains however elusive, as previous studies have relied on animal-based models and fetal or animal-derived cell lines. This study presents the first in vitro data obtained from primary human alveolar osteoblasts. Primary human alveolar osteoblasts were isolated from healthy donors and expanded. After X-ray irradiation with 2, 6 and 10 Gy, cells were cultivated under osteogenic conditions and analyzed regarding their proliferation, mineralization, and expression of marker genes and proteins. Proliferation of osteoblasts decreased in a dose-dependent manner. While cells recovered from irradiation with 2 Gy, application of 6 and 10 Gy doses not only led to a permanent impairment of proliferation, but also resulted in altered cell morphology and a disturbed structure of the extracellular matrix as demonstrated by immunostaining of collagen I and fibronectin. Following irradiation with any of the examined doses, a decrease of marker gene expression levels was observed for most of the investigated genes, revealing interindividual differences. Primary human alveolar osteoblasts presented a considerably changed phenotype after irradiation, depending on the dose administered. Mechanisms for these findings need to be further investigated. This could facilitate improved patient care by re-evaluating current standard procedures and investigating faster and safer reconstruction concepts, thus improving quality of life and social integrity.


Assuntos
Relação Dose-Resposta à Radiação , Osteoblastos/efeitos da radiação , Biomarcadores , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Imunofluorescência , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Projetos Piloto , Biossíntese de Proteínas , Radiação Ionizante
10.
Sci Rep ; 11(1): 4876, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649412

RESUMO

Jawbone differs from other bones in many aspects, including its developmental origin and the occurrence of jawbone-specific diseases like MRONJ (medication-related osteonecrosis of the jaw). Although there is a strong need, adequate in vitro models of this unique environment are sparse to date. While previous approaches are reliant e.g. on scaffolds or spheroid culture, 3D bioprinting enables free-form fabrication of complex living tissue structures. In the present work, production of human jawbone models was realised via projection-based stereolithography. Constructs were bioprinted containing primary jawbone-derived osteoblasts and vasculature-like channel structures optionally harbouring primary endothelial cells. After 28 days of cultivation in growth medium or osteogenic medium, expression of cell type-specific markers was confirmed on both the RNA and protein level, while prints maintained their overall structure. Survival of endothelial cells in the printed channels, co-cultured with osteoblasts in medium without supplementation of endothelial growth factors, was demonstrated. Constructs showed not only mineralisation, being one of the characteristics of osteoblasts, but also hinted at differentiation to an osteocyte phenotype. These results indicate the successful biofabrication of an in vitro model of the human jawbone, which presents key features of this special bone entity and hence appears promising for application in jawbone-specific research.


Assuntos
Bioimpressão , Células Endoteliais/metabolismo , Arcada Osseodentária , Osteoblastos/metabolismo , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Técnicas de Cocultura , Humanos
11.
Science ; 374(6564): eabh1823, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34465633

RESUMO

The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)­reactive and SARS-CoV-2­cross-reactive CD4+ T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830­reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti­SARS-CoV-2-S1-IgG antibodies. Spike­cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike­cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doenças Assintomáticas , Vacina BNT162 , Complexo CD3/imunologia , Vacinas contra COVID-19/imunologia , Reações Cruzadas , Feminino , Humanos , Imunidade , Epitopos Imunodominantes/imunologia , Masculino , Pessoa de Meia-Idade , Fases de Leitura Aberta , Fragmentos de Peptídeos/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Adulto Jovem
12.
Int J Colorectal Dis ; 25(1): 129-33, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19705133

RESUMO

PURPOSE: Vessel sealing has been well-established in surgical practice in recent years. Bipolar radiofrequency-induced thermofusion (BIRTH) of intestinal tissue might replace traditionally used staples or sutures in the near future. In this experimental study, the influence of compressive pressure, fusion temperature, and duration of heating on the quality of intestinal anastomosis was investigated to obtain the relevant major parameters for the in vivo use of this system. METHODS: An experimental setup for a closed-loop temperature-controlled bipolar radiofrequency-induced thermofusion of porcine intestinal tissue was developed. Twenty-four colon samples were harvested from nine different Saalower-Kräuter pigs and then anastomosed altering compressive pressure on five different levels to explore its influence on anastomotic bursting pressure. RESULTS: The anastomotic bursting strength depends on the compressive pressure applied to the colonic fusion site. An optimal interval of compressive pressure (CP = 1.125 N/mm(2)) in respect of a high amount of burst pressure was detected. A correlation (r = 0.54, p = 0.015) of burst pressure to delta compression indicated that increasing colonic wall thickness probably strengthens the anastomotic fusion. CONCLUSION: This study is a first step to enlighten the major parameters of tissue fusion, though effects and interactions of various main parameters of bipolar radiofrequency-induced thermofusion of colonic tissue remain unclear. Further studies exploring the main effects and interactions of tissue and process parameters to the quality of the fusion site have to follow.


Assuntos
Anastomose Cirúrgica/métodos , Ondas de Rádio , Temperatura , Animais , Colo/patologia , Colo/cirurgia , Projetos Piloto , Pressão , Análise de Regressão , Sus scrofa/cirurgia , Suínos
13.
PLoS One ; 15(6): e0234641, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574164

RESUMO

Chondrocytes, comparable to many cells from the connective tissue, dedifferentiate and end up in a similar fibroblastoid cell type, marked by the loss of the specific expression pattern. Here, chondrocytes isolated from osteoarthritic (OA) patients were investigated. The OA chondrocytes used in this work were not affected by the loss of specific gene expression upon cell culture. The mRNA levels of known cartilage markers, such as SOX5, SOX6, SOX9, aggrecan and proteoglycan 4, remained unchanged. Since chondrocytes from OA and healthy tissue show different DNA methylation patterns, the underlying mechanisms of cartilage marker maintenance were investigated with a focus on the epigenetic modification by DNA methylation. The treatment of dedifferentiated chondrocytes with the DNA methyltransferase inhibitor 5-aza-2´-deoxycytidine (5-aza-dC) displayed no considerable impact on the maintenance of marker gene expression observed in the dedifferentiated state, while the chondrogenic differentiation capacity was compromised. On the other hand, the pre-cultivation with 5-aza-dC improved the osteogenesis and adipogenesis of OA chondrocytes. Contradictory to these effects, the DNA methylation levels were not reduced after treatment for four weeks with 1 µM 5-aza-dC. In conclusion, 5-aza-dC affects the differentiation capacity of OA chondrocytes, while the global DNA methylation level remains stable. Furthermore, dedifferentiated chondrocytes isolated from late-stage OA patients represent a reliable cell source for in vitro studies and disease models without the need for additional alterations.


Assuntos
Condrócitos/patologia , Decitabina/farmacologia , Osteoartrite/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Biomarcadores/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Osteoartrite/genética , Osteogênese/efeitos dos fármacos , Osteogênese/genética
14.
Sci Rep ; 10(1): 15606, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973223

RESUMO

Barrier organ models need a scaffold structure to create a two compartment culture. Technical filter membranes used most often as scaffolds may impact cell behaviour and present a barrier themselves, ultimately limiting transferability of test results. In this work we present an alternative for technical filter membrane systems: a 3D bioprinted biological membrane in 24 well format. The biological membrane, based on extracellular matrix (ECM), is highly permeable and presents a natural 3D environment for cell culture. Inspired by the human placenta we established a coculture of a trophoblast-derived cell line (BeWo b30), together with primary placental fibroblasts within the biological membrane (simulating villous stroma) and primary human placental endothelial cells-representing three cellular components of the human placental villus. All cell types maintained their cell type specific marker expression after two weeks of coculture on the biological membrane. In permeability assays the trophoblast layer developed a barrier on the biological membrane, which was even more pronounced when cocultured with fibroblasts. In this work we present a filter membrane free scaffold, we characterize its properties and assess its suitability for cell culture and barrier models. Further we show a novel placenta inspired model in a complex bioprinted coculture. In the absence of an artificial filter membrane, we demonstrate barrier architecture and functionality.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Membrana Celular/metabolismo , Coriocarcinoma/patologia , Vilosidades Coriônicas/patologia , Imageamento Tridimensional/métodos , Trofoblastos/citologia , Transporte Biológico , Sobrevivência Celular , Células Cultivadas , Coriocarcinoma/metabolismo , Vilosidades Coriônicas/metabolismo , Feminino , Humanos , Gravidez , Trofoblastos/metabolismo , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia
15.
Acta Biomater ; 117: 121-132, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32980542

RESUMO

Introduction of cavities and channels into 3D bioprinted constructs is a prerequisite for recreating physiological tissue architectures and integrating vasculature. Projection-based stereolithography inherently offers high printing speed with high spatial resolution, but so far has been incapable of fabricating complex native tissue architectures with cellular and biomaterial diversity. The use of sacrificial photoinks, i.e. photopolymerisable biomaterials that can be removed after printing, theoretically allows for the creation of any construct geometry via a multi-material printing process. However, the realisation of this strategy has been challenging because of difficult technical implementation and a lack of performant biomaterials. In this work, we use our projection-based, multi-material stereolithographic bioprinter and an enzymatically degradable sacrificial photoink to overcome the current hurdles. Multiple, hyaluronic acid-based photoinks were screened for printability, mechanical properties and digestibility through hyaluronidase. A formulation meeting all major requirements, i.e. desirable printing properties, generation of sufficiently strong hydrogels, as well as fast digestion rate, was identified. Biocompatibility of the material system was confirmed by embedding of human umbilical vein endothelial cells with followed enzymatic release. As a proof-of-concept, we bioprinted vascular models containing perfusable, endothelial cell-lined channels that remained stable for 28 days in culture. Our work establishes digestible sacrificial biomaterials as a new material strategy for 3D bioprinting of complex tissue models.


Assuntos
Bioimpressão , Humanos , Hidrogéis , Impressão Tridimensional , Estereolitografia , Engenharia Tecidual , Alicerces Teciduais
16.
J Tissue Eng Regen Med ; 14(6): 761-773, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293116

RESUMO

Application of reconstructed human Skin (RhS) is a promising approach for the treatment of extensive wounds and for drug efficacy and safety testing. However, incorporating appendages, such as hair follicles, into RhS still remains a challenge. The hair follicle plays a critical role in thermal regulation, dispersion of sweat and sebum, sensory and tactile functions, skin regeneration, and repigmentation. The aim of this study was to determine whether human neopapilla could be incorporated into RhS (differentiated epidermis on fibroblast and endothelial cell populated dermis) and whether the neopapillae maintain their inductive follicular properties in vitro. Neopapillae spheroids, constructed from expanded and self-aggregating dermal papilla cells, synthesized extracellular matrix typically found in follicular papillae. Compared with dermal fibroblasts, neopapillae showed increased expression of multiple genes (Wnt5a, Wnt10b, and LEF1) known to regulate hair development and also increased secretion of CXCL1, which is a strong keratinocyte chemoattractant. When neopapillae were incorporated into the dermis of RhS, they stimulated epidermal down-growth resulting in engulfment of the neopapillae sphere. Similar to the native hair follicle, the differentiated invaginating epidermis inner side was keratin 10 positive and the undifferentiated outer side keratin 10 negative. The outer side was keratin 15 positive confirming the undifferentiated nature of these keratinocytes aligning a newly formed collagen IV, laminin V positive basement membrane within the hydrogel. In conclusion, we describe a RhS model containing neopapillae with hair follicle-inductive properties. Importantly, epidermal invagination occurred to engulf the neopapillae, thus demonstrating in vitro the first steps towards hair follicle morphogenesis in RhS.


Assuntos
Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Folículo Piloso/metabolismo , Esferoides Celulares/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Fibroblastos/citologia , Folículo Piloso/citologia , Humanos , Masculino , Esferoides Celulares/citologia
17.
In Vitro Cell Dev Biol Anim ; 56(10): 847-858, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170472

RESUMO

Access to complex in vitro models that recapitulate the unique markers and cell-cell interactions of the hair follicle is rather limited. Creation of scalable, affordable, and relevant in vitro systems which can provide predictive screens of cosmetic ingredients and therapeutic actives for hair health would be highly valued. In this study, we explore the features of the microfollicle, a human hair follicle organoid model based on the spatio-temporally defined co-culture of primary cells. The microfollicle provides a 3D differentiation platform for outer root sheath keratinocytes, dermal papilla fibroblasts, and melanocytes, via epidermal-mesenchymal-neuroectodermal cross-talk. For assay applications, microfollicle cultures were adapted to 96-well plates suitable for medium-throughput testing up to 21 days, and characterized for their spatial and lineage markers. The microfollicles showed hair-specific keratin expression in both early and late stages of cultivation. The gene expression profile of microfollicles was also compared with human clinical biopsy samples in response to the benchmark hair-growth compound, minoxidil. The gene expression changes in microfollicles showed up to 75% overlap with the corresponding gene expression signature observed in the clinical study. Based on our results, the cultivation of the microfollicle appears to be a practical tool for generating testable insights for hair follicle development and offers a complex model for pre-clinical substance testing.


Assuntos
Folículo Piloso/citologia , Modelos Biológicos , Biomarcadores/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Folículo Piloso/ultraestrutura , Humanos , Recém-Nascido , Queratinas/metabolismo , Masculino , Melanócitos/citologia , Melanócitos/efeitos dos fármacos , Minoxidil/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Differentiation ; 76(4): 404-16, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18028449

RESUMO

Epithelial-mesenchymal transition (EMT) is involved in normal embryonic development as well as in tumor progression and invasiveness. This process is also known to be a crucial step in palatogenesis during fusion of the bi-lateral palatal processes. Disruption of this step results in a cleft palate, which is among the most frequent birth defects in humans. A number of genes and encoded proteins have been shown to play a role in this developmental stage. The central role is attributed to the cytokine transforming growth factor-beta3 (TGF-beta3), which is expressed in the medial edge epithelium (MEE) already before the fusion process. The MEE covers the tips of the growing palatal shelves and eventually undergoes EMT or programmed cell death (apoptosis). TGF-beta3 is described to induce EMT in embryonic palates. With regard to the early expression of this molecule before the fusion process, it is not well understood which mechanisms prevent the TGF-beta3 producing epithelial cells from undergoing differentiation precociously. We used the murine palatal fusion to study the regulation of EMT. Specifically, we analyzed the MEE for the expression of known antagonists of TGF-beta molecules using in situ hybridization and detected the gene coding for Follistatin to be co-expressed with TGF-beta3. Further, we could show that Follistatin directly binds to TGF-beta3 and that it completely blocks TGF-beta3-induced EMT of the normal murine mammary gland (NMuMG) epithelial cell line in vitro. In addition, we analyzed the gene expression profile of NMuMG cells during TGF-beta3-induced EMT by microarray hybridization, detecting strong changes in the expression of apoptosis-regulating genes.


Assuntos
Células Epiteliais/citologia , Folistatina/fisiologia , Mesoderma/citologia , Palato/embriologia , Fator de Crescimento Transformador beta3/fisiologia , Animais , Sequência de Bases , Primers do DNA , Feminino , Folistatina/metabolismo , Hibridização In Situ , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Palato/citologia , Reação em Cadeia da Polimerase , Gravidez , Ligação Proteica , Fator de Crescimento Transformador beta3/metabolismo
19.
Sci Rep ; 9(1): 7057, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065008

RESUMO

Functional in vitro models emulating the physiological processes of human organ formation are invaluable for future research and the development of regenerative therapies. Here, a developmentally inspired approach is pursued to reproduce fundamental steps of human tooth organogenesis in vitro using human dental pulp cells. Similar to the in vivo situation of tooth initiating mesenchymal condensation, a 3D self-organizing culture was pursued resulting in an organoid of the size of a human tooth germ with odontogenic marker expression. Furthermore, the model is capable of epithelial invagination into the condensed mesenchyme, mimicking the reciprocal tissue interactions of human tooth development. Comprehensive transcriptome analysis revealed activation of well-studied as well as rather less investigated signaling pathways implicated in human tooth organogenesis, such as the Notch signaling. Early condensation in vitro revealed a shift to the TGFß signal transduction pathway and a decreased RhoA small GTPase activity, connected to the remodeling of the cytoskeleton and actin-mediated mechanotransduction. Therefore, this in vitro model of tooth development provides a valuable model to study basic human developmental mechanisms.


Assuntos
Polpa Dentária/citologia , Técnicas de Cultura de Tecidos/métodos , Dente/crescimento & desenvolvimento , Adolescente , Adulto , Biomarcadores/metabolismo , Diferenciação Celular/genética , Polpa Dentária/metabolismo , Células Epiteliais , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Odontogênese/efeitos dos fármacos , Odontogênese/genética , Organoides , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Dente/fisiologia , Adulto Jovem
20.
J Biomed Mater Res B Appl Biomater ; 107(8): 2649-2657, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30860678

RESUMO

To create artificial cartilage in vitro, mimicking the function of native extracellular matrix (ECM) and morphological cartilage-like shape is essential. The interplay of cell patterning and matrix concentration has high impact on the phenotype and viability of the printed cells. To advance the capabilities of cartilage bioprinting, we investigated different ECMs to create an in vitro chondrocyte niche. Therefore, we used methacrylated gelatin (GelMA) and methacrylated hyaluronic acid (HAMA) in a stereolithographic bioprinting approach. Both materials have been shown to support cartilage ECM formation and recovery of chondrocyte phenotype. We used these materials as bioinks to create cartilage models with varying chondrocyte densities. The models maintained shape, viability, and homogenous cell distribution over 14 days in culture. Chondrogenic differentiation was demonstrated by cartilage-typical proteoglycan and type II collagen deposition and gene expression (COL2A1, ACAN) after 14 days of culture. The differentiation pattern was influenced by cell density. A high cell density print (25 × 106 cells/mL) led to enhanced cartilage-typical zonal segmentation compared to cultures with lower cell density (5 × 106 cells/mL). Compared to HAMA, GelMA resulted in a higher expression of COL1A1, typical for a more premature chondrocyte phenotype. Both bioinks are feasible for printing in vitro cartilage with varying differentiation patterns and ECM organization depending on starting cell density and chosen bioink. The presented technique could find application in the creation of cartilage models and in the treatment of articular cartilage defects using autologous material and adjusting the bioprinted constructs size and shape to the patient. © 2019 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2649-2657, 2019.


Assuntos
Bioimpressão , Cartilagem/metabolismo , Condrócitos/metabolismo , Gelatina/química , Ácido Hialurônico/química , Processos Fotoquímicos , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Cartilagem/citologia , Condrócitos/citologia , Teste de Materiais , Suínos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA