Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165204

RESUMO

Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m-2 ⋅ d-1 Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.


Assuntos
Alismatales/metabolismo , Euryarchaeota/metabolismo , Metano/metabolismo , Aerobiose , Anaerobiose , Euryarchaeota/classificação , Sedimentos Geológicos , Mar Mediterrâneo , Microbiota , Oxirredução , Filogenia , Especificidade da Espécie
2.
Environ Microbiol ; 23(3): 1422-1435, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264477

RESUMO

Diatoms are among the few eukaryotes known to store nitrate (NO3 - ) and to use it as an electron acceptor for respiration in the absence of light and O2 . Using microscopy and 15 N stable isotope incubations, we studied the relationship between dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and diel vertical migration of diatoms in phototrophic microbial mats and the underlying sediment of a sinkhole in Lake Huron (USA). We found that the diatoms rapidly accumulated NO3 - at the mat-water interface in the afternoon and 40% of the population migrated deep into the sediment, where they were exposed to dark and anoxic conditions for ~75% of the day. The vertical distribution of DNRA rates and diatom abundance maxima coincided, suggesting that DNRA was the main energy generating metabolism of the diatom population. We conclude that the illuminated redox-dynamic ecosystem selects for migratory diatoms that can store nitrate for respiration in the absence of light. A major implication of this study is that the dominance of DNRA over denitrification is not explained by kinetics or thermodynamics. Rather, the dynamic conditions select for migratory diatoms that perform DNRA and can outcompete sessile denitrifiers.


Assuntos
Compostos de Amônio , Diatomáceas , Desnitrificação , Diatomáceas/metabolismo , Ecossistema , Sedimentos Geológicos , Nitratos/análise , Nitrogênio , Respiração
3.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585991

RESUMO

Members of the epsilonproteobacterial genus Arcobacter have been identified to be potentially important sulfide oxidizers in marine coastal, seep, and stratified basin environments. In the highly productive upwelling waters off the coast of Peru, Arcobacter cells comprised 3 to 25% of the total microbial community at a near-shore station where sulfide concentrations exceeded 20 µM in bottom waters. From the chemocline where the Arcobacter population exceeded 106 cells ml-1 and where high rates of denitrification (up to 6.5 ± 0.4 µM N day-1) and dark carbon fixation (2.8 ± 0.2 µM C day-1) were measured, we isolated a previously uncultivated Arcobacter species, Arcobacter peruensis sp. nov. (BCCM LMG-31510). Genomic analysis showed that A. peruensis possesses genes encoding sulfide oxidation and denitrification pathways but lacks the ability to fix CO2 via autotrophic carbon fixation pathways. Genes encoding transporters for organic carbon compounds, however, were present in the A. peruensis genome. Physiological experiments demonstrated that A. peruensis grew best on a mix of sulfide, nitrate, and acetate. Isotope labeling experiments further verified that A. peruensis completely reduced nitrate to N2 and assimilated acetate but did not fix CO2, thus coupling heterotrophic growth to sulfide oxidation and denitrification. Single-cell nanoscale secondary ion mass spectrometry analysis of samples taken from shipboard isotope labeling experiments also confirmed that the Arcobacter population in situ did not substantially fix CO2 The efficient growth yield associated with the chemolithoheterotrophic metabolism of A. peruensis may allow this Arcobacter species to rapidly bloom in eutrophic and sulfide-rich waters off the coast of Peru.IMPORTANCE Our multidisciplinary approach provides new insights into the ecophysiology of a newly isolated environmental Arcobacter species, as well as the physiological flexibility within the Arcobacter genus and sulfide-oxidizing, denitrifying microbial communities within oceanic oxygen minimum zones (OMZs). The chemolithoheterotrophic species Arcobacter peruensis may play a substantial role in the diverse consortium of bacteria that is capable of coupling denitrification and fixed nitrogen loss to sulfide oxidation in eutrophic, sulfidic coastal waters. With increasing anthropogenic pressures on coastal regions, e.g., eutrophication and deoxygenation (D. Breitburg, L. A. Levin, A. Oschlies, M. Grégoire, et al., Science 359:eaam7240, 2018, https://doi.org/10.1126/science.aam7240), niches where sulfide-oxidizing, denitrifying heterotrophs such as A. peruensis thrive are likely to expand.


Assuntos
Arcobacter/isolamento & purificação , Arcobacter/metabolismo , Sedimentos Geológicos/microbiologia , Processos Heterotróficos/fisiologia , Água do Mar/microbiologia , Sulfetos/metabolismo , Arcobacter/genética , Arcobacter/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Ciclo do Carbono , Desnitrificação , Marcação por Isótopo , Nitratos/metabolismo , Fixação de Nitrogênio , Oxirredução , Oxigênio/metabolismo , Peru , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Água/química , Microbiologia da Água , Sequenciamento Completo do Genoma
4.
Proc Natl Acad Sci U S A ; 113(40): E5925-E5933, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27655888

RESUMO

Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet-a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite "leakage" during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales.


Assuntos
Genômica/métodos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Oxigênio/metabolismo , Oxigênio/farmacologia , Sequência de Bases , Calibragem , DNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
5.
Environ Microbiol ; 20(12): 4486-4502, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30117262

RESUMO

Coastal oceans receive large amounts of anthropogenic fixed nitrogen (N), most of which is denitrified in the sediment before reaching the open ocean. Sandy sediments, which are common in coastal regions, seem to play an important role in catalysing this N-loss. Permeable sediments are characterized by advective porewater transport, which supplies high fluxes of organic matter into the sediment, but also leads to fluctuations in oxygen and nitrate concentrations. Little is known about how the denitrifying communities in these sediments are adapted to such fluctuations. Our combined results indicate that denitrification in eutrophied sandy sediments from the world's largest tidal flat system, the Wadden Sea, is carried out by different groups of microorganisms. This segregation leads to the formation of N2 O which is advectively transported to the overlying waters and thereby emitted to the atmosphere. At the same time, the production of N2 O within the sediment supports a subset of Flavobacteriia which appear to be specialized on N2 O reduction. If the mechanisms shown here are active in other coastal zones, then denitrification in eutrophied sandy sediments may substantially contribute to current marine N2 O emissions.


Assuntos
Desnitrificação , Sedimentos Geológicos/microbiologia , Óxido Nitroso/metabolismo , Microbiologia do Solo , Atmosfera , Sedimentos Geológicos/química , Nitratos/metabolismo , Fixação de Nitrogênio , Oceanos e Mares
6.
Environ Microbiol ; 20(2): 755-768, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29194930

RESUMO

The N2 -fixing (diazotrophic) community in marine ecosystems is dominated by non-cyanobacterial microorganisms. Yet, very little is known about their identity, function and ecological relevance due to a lack of cultured representatives. Here we report a novel heterotrophic diazotroph isolated from the oxygen minimum zone (OMZ) off Peru. The new species belongs to the genus Sagittula (Rhodobacteraceae, Alphaproteobacteria) and its capability to fix N2 was confirmed in laboratory experiments. Genome sequencing revealed that it is a strict heterotroph with a high versatility in substrate utilization and energy acquisition mechanisms. Pathways for sulfide oxidation and nitrite reduction to nitrous oxide are encoded in the genome and might explain the presence throughout the Peruvian OMZ. The genome further indicates that this novel organism could be in direct interaction with other microbes or particles. NanoSIMS analyses were used to compare the metabolic potential of S. castanea with single-cell activity in situ; however, N2 fixation by this diazotroph could not be detected at the isolation site. While the biogeochemical impact of S. castanea is yet to be resolved, its abundance and widespread distribution suggests that its potential to contribute to the marine N input could be significant at a larger geographical scale.


Assuntos
Metabolismo Energético/fisiologia , Fixação de Nitrogênio/fisiologia , Rhodobacteraceae/classificação , Rhodobacteraceae/metabolismo , Anaerobiose , Metabolismo Energético/genética , Genoma Bacteriano/genética , Processos Heterotróficos , Nitritos/metabolismo , Fixação de Nitrogênio/genética , Oxirredução , Oxigênio/metabolismo , Peru , Rhodobacteraceae/isolamento & purificação , Água do Mar/microbiologia , Sulfetos/metabolismo
7.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802192

RESUMO

Filamentous large sulfur-oxidizing bacteria (FLSB) of the family Beggiatoaceae are globally distributed aquatic bacteria that can control geochemical fluxes from the sediment to the water column through their metabolic activity. FLSB mats from hydrothermal sediments of Guaymas Basin, Mexico, typically have a "fried-egg" appearance, with orange filaments dominating near the center and wider white filaments at the periphery, likely reflecting areas of higher and lower sulfide fluxes, respectively. These FLSB store large quantities of intracellular nitrate that they use to oxidize sulfide. By applying a combination of 15N-labeling techniques and genome sequence analysis, we demonstrate that the white FLSB filaments were capable of reducing their intracellular nitrate stores to both nitrogen gas and ammonium by denitrification and dissimilatory nitrate reduction to ammonium (DNRA), respectively. On the other hand, our combined results show that the orange filaments were primarily capable of DNRA. Microsensor profiles through a laboratory-incubated white FLSB mat revealed a 2- to 3-mm vertical separation between the oxic and sulfidic zones. Denitrification was most intense just below the oxic zone, as shown by the production of nitrous oxide following exposure to acetylene, which blocks nitrous oxide reduction to nitrogen gas. Below this zone, a local pH maximum coincided with sulfide oxidation, consistent with nitrate reduction by DNRA. The balance between internally and externally available electron acceptors (nitrate) and electron donors (reduced sulfur) likely controlled the end product of nitrate reduction both between orange and white FLSB mats and between different spatial and geochemical niches within the white FLSB mat.IMPORTANCE Whether large sulfur bacteria of the family Beggiatoaceae reduce NO3- to N2 via denitrification or to NH4+ via DNRA has been debated in the literature for more than 25 years. We resolve this debate by showing that certain members of the Beggiatoaceae use both metabolic pathways. This is important for the ecological role of these bacteria, as N2 production removes bioavailable nitrogen from the ecosystem, whereas NH4+ production retains it. For this reason, the topic of environmental controls on the competition for NO3- between N2-producing and NH4+-producing bacteria is of great scientific interest. Recent experiments on the competition between these two types of microorganisms have demonstrated that the balance between electron donor and electron acceptor availability strongly influences the end product of NO3- reduction. Our results suggest that this is also the case at the even more fundamental level of enzyme system regulation within a single organism.


Assuntos
Compostos de Amônio/metabolismo , Gammaproteobacteria/metabolismo , Sedimentos Geológicos/microbiologia , Fontes Hidrotermais/microbiologia , Nitratos/metabolismo , Desnitrificação , Ecossistema , Gammaproteobacteria/química , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , México , Oxirredução , Filogenia
8.
Nature ; 488(7411): 361-4, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22878720

RESUMO

Biological dinitrogen fixation provides the largest input of nitrogen to the oceans, therefore exerting important control on the ocean's nitrogen inventory and primary productivity. Nitrogen-isotope data from ocean sediments suggest that the marine-nitrogen inventory has been balanced for the past 3,000 years (ref. 4). Producing a balanced marine-nitrogen budget based on direct measurements has proved difficult, however, with nitrogen loss exceeding the gain from dinitrogen fixation by approximately 200 Tg N yr−1 (refs 5, 6). Here we present data from the Atlantic Ocean and show that the most widely used method of measuring oceanic N2-fixation rates underestimates the contribution of N2-fixing microorganisms (diazotrophs) relative to a newly developed method. Using molecular techniques to quantify the abundance of specific clades of diazotrophs in parallel with rates of 15N2 incorporation into particulate organic matter, we suggest that the difference between N2-fixation rates measured with the established method and those measured with the new method can be related to the composition of the diazotrophic community. Our data show that in areas dominated by Trichodesmium, the established method underestimates N2-fixation rates by an average of 62%. We also find that the newly developed method yields N2-fixation rates more than six times higher than those from the established method when unicellular, symbiotic cyanobacteria and γ-proteobacteria dominate the diazotrophic community. On the basis of average areal rates measured over the Atlantic Ocean, we calculated basin-wide N2-fixation rates of 14 ± 1 Tg N yr−1 and 24 ±1 Tg N yr−1 for the established and new methods, respectively. If our findings can be extrapolated to other ocean basins, this suggests that the global marine N2-fixation rate derived from direct measurements may increase from 103 ± 8 Tg N yr−1 to 177 ± 8 Tg N yr−1, and that the contribution of N2 fixers other than Trichodesmium is much more significant than was previously thought.


Assuntos
Organismos Aquáticos/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Oceano Atlântico , Cianobactérias/genética , Cianobactérias/metabolismo , Diatomáceas/metabolismo , Cinética , Oxirredutases/genética , Proteobactérias/genética , Proteobactérias/metabolismo , Água do Mar/química , Taq Polimerase/metabolismo , Temperatura , Clima Tropical
9.
Proc Natl Acad Sci U S A ; 110(47): 18994-9, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191043

RESUMO

Nitrogen (N) isotope ratios ((15)N/(14)N) provide integrative constraints on the N inventory of the modern ocean. Anaerobic ammonium oxidation (anammox), which converts ammonium and nitrite to dinitrogen gas (N2) and nitrate, is an important fixed N sink in marine ecosystems. We studied the so far unknown N isotope effects of anammox in batch culture experiments. Anammox preferentially removes (14)N from the ammonium pool with an isotope effect of +23.5‰ to +29.1‰, depending on factors controlling reversibility. The N isotope effects during the conversion of nitrite to N2 and nitrate are (i) inverse kinetic N isotope fractionation associated with the oxidation of nitrite to nitrate (-31.1 ± 3.9‰), (ii) normal kinetic N isotope fractionation during the reduction of nitrite to N2 (+16.0 ± 4.5‰), and (iii) an equilibrium N isotope effect between nitrate and nitrite (-60.5 ± 1.0‰), induced when anammox is exposed to environmental stress, leading to the superposition of N isotope exchange effects upon kinetic N isotope fractionation. Our findings indicate that anammox may be responsible for the unresolved large N isotope offsets between nitrate and nitrite in oceanic oxygen minimum zones. Irrespective of the extent of N isotope exchange between nitrate and nitrite, N removed from the combined nitrite and nitrate (NOx) pool is depleted in (15)N relative to NOx. This net N isotope effect by anammox is superimposed on the N isotope fractionation by the co-occurring reduction of nitrate to nitrite in suboxic waters, possibly enhancing the overall N isotope effect for N loss from oxygen minimum zones.


Assuntos
Compostos de Amônio/metabolismo , Bactérias Anaeróbias/metabolismo , Isótopos de Nitrogênio/metabolismo , Água do Mar/análise , Cinética , Modelos Biológicos , Oceanos e Mares , Água do Mar/microbiologia
10.
Environ Microbiol ; 17(12): 5023-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26013766

RESUMO

The gutless marine worm Olavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO2 ) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O. algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H2 ) might also be used as energy sources. We provide direct evidence that the O. algarvensis symbiosis consumes CO and H2 . Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3-symbiont, uses the energy from CO oxidation to fix CO2 . Pore water analysis revealed considerable in-situ concentrations of CO and H2 in the O. algarvensis environment, Mediterranean seagrass sediments. Pore water H2 concentrations (89-2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36-fold higher than previously known from shallow-water marine sediments. Pore water CO concentrations (17-51 nM) were twice as high as in the overlying seawater (no literature data from other shallow-water sediments are available for comparison). Ex-situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments.


Assuntos
Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Hidrogênio/metabolismo , Oligoquetos/microbiologia , Água do Mar/microbiologia , Animais , Dióxido de Carbono/metabolismo , Metabolismo Energético , Região do Mediterrâneo , Oxirredução , Espectrometria de Massa de Íon Secundário , Compostos de Enxofre/metabolismo , Simbiose
11.
Appl Environ Microbiol ; 81(6): 2025-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576611

RESUMO

Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fontes Termais/microbiologia , Oxigênio/metabolismo , Fotossíntese , Carbono/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/isolamento & purificação , Sulfitos/metabolismo
12.
Nature ; 457(7229): 581-4, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19078958

RESUMO

Coastal waters support approximately 90 per cent of global fisheries and are therefore an important food reserve for our planet. Eutrophication of these waters, due to human activity, leads to severe oxygen depletion and the episodic occurrence of hydrogen sulphide-toxic to multi-cellular life-with disastrous consequences for coastal ecosytems. Here we show that an area of approximately 7,000 km(2) of African shelf, covered by sulphidic water, was detoxified by blooming bacteria that oxidized the biologically harmful sulphide to environmentally harmless colloidal sulphur and sulphate. Combined chemical analyses, stoichiometric modelling, isotopic incubations, comparative 16S ribosomal RNA, functional gene sequence analyses and fluorescence in situ hybridization indicate that the detoxification proceeded by chemolithotrophic oxidation of sulphide with nitrate and was mainly catalysed by two discrete populations of gamma- and epsilon-proteobacteria. Chemolithotrophic bacteria, accounting for approximately 20 per cent of the bacterioplankton in sulphidic waters, created a buffer zone between the toxic sulphidic subsurface waters and the oxic surface waters, where fish and other nekton live. This is the first time that large-scale detoxification of sulphidic waters by chemolithotrophs has been observed in an open-ocean system. The data suggest that sulphide can be completely consumed by bacteria in the subsurface waters and, thus, can be overlooked by remote sensing or monitoring of shallow coastal waters. Consequently, sulphidic bottom waters on continental shelves may be more common than previously believed, and could therefore have an important but as yet neglected effect on benthic communities.


Assuntos
Eutrofização , Sulfeto de Hidrogênio/metabolismo , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/metabolismo , Água do Mar/química , Biodegradação Ambiental , Dados de Sequência Molecular , Namíbia , Oceanos e Mares , Oxirredução , Filogenia , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Enxofre/metabolismo
13.
Environ Microbiol ; 16(6): 1612-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24286252

RESUMO

Hydrothermal sediments in the Guaymas Basin are covered by microbial mats that are dominated by nitrate-respiring and sulphide-oxidizing Beggiatoa. The presence of these mats strongly correlates with sulphide- and ammonium-rich fluids venting from the subsurface. Because ammonium and oxygen form opposed gradients at the sediment surface, we hypothesized that nitrification is an active process in these Beggiatoa mats. Using biogeochemical and molecular methods, we measured nitrification and determined the diversity and abundance of nitrifiers. Nitrification rates ranged from 74 to 605 µmol N l(-1) mat day(-1), which exceeded those previously measured in hydrothermal plumes and other deep-sea habitats. Diversity and abundance analyses of archaeal and bacterial ammonia monooxygenase subunit A genes, archaeal 16S ribosomal RNA pyrotags and fluorescence in situ hybridization confirmed that ammonia- and nitrite-oxidizing microorganisms were associated with Beggiatoa mats. Intriguingly, we observed cells of bacterial and potential thaumarchaeotal ammonia oxidizers attached to narrow, Beggiatoa-like filaments. Such a close spatial coupling of nitrification and nitrate respiration in mats of large sulphur bacteria is novel and may facilitate mat-internal cycling of nitrogen, thereby reducing loss of bioavailable nitrogen in deep-sea sediments.


Assuntos
Archaea/genética , Beggiatoa/fisiologia , Biofilmes , Sedimentos Geológicos/microbiologia , Nitrificação , Compostos de Amônio/química , Archaea/enzimologia , Proteínas Arqueais/genética , Oceano Atlântico , Bactérias/genética , Proteínas de Bactérias/genética , Dosagem de Genes , Genes Arqueais , Genes Bacterianos , Variação Genética , Sedimentos Geológicos/química , Fontes Hidrotermais/microbiologia , Fenômenos Microbiológicos , Dados de Sequência Molecular , Nitratos/química , Óxido Nítrico/química , Oxirredução , Oxirredutases/genética , Oxigênio/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Environ Microbiol ; 16(10): 3153-67, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24612325

RESUMO

The globally abundant, uncultured unicellular cyanobacterium UCYN-A was recently discovered living in association with a eukaryotic cell closely related to a prymnesiophyte. Here, we established a double CAtalysed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH) approach to identify both partners and provided quantitative information on their distribution and abundance across distinct water masses along a transect in the North Atlantic Ocean. The N2 fixation activity coincided with the detection of UCYN-A cells and was only observed in oligotrophic (< 0.067 NO3(-) µM and < 0.04 PO4(3-) µM) and warm (> 18°C) surface waters. Parallel 16S ribosomal RNA gene analyses among unicellular diazotrophs indicated that only UCYN-A cells were present. UCYN-A cells were associated with an algal partner or non-associated using the double CARD-FISH approach. We demonstrated that UCYN-A cells living in association with Haptophyta were the dominant form (87.0 ± 6.1%), whereas non-associated UCYN-A cells represented only a minor fraction (5.2 ± 3.9%). Interestingly, UCYN-A cells were also detected living in association with unknown single-celled eukaryotes in small amounts (7.8 ± 5.2%), presumably Alveolata. The proposed ecological niche of UCYN-A as an oligotrophic, mesophilic and obligate symbiotic nitrogen-fixing microorganism is evident for the North Atlantic Ocean.


Assuntos
Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Haptófitas/isolamento & purificação , Consórcios Microbianos , Fixação de Nitrogênio , Água do Mar/microbiologia , Oceano Atlântico , Dióxido de Carbono/metabolismo , Cianobactérias/genética , Haptófitas/genética , Hibridização in Situ Fluorescente , Fixação de Nitrogênio/genética
15.
Environ Microbiol ; 16(10): 3331-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25115991

RESUMO

The temperature dependency of denitrification and anaerobic ammonium oxidation (anammox) rates from Arctic fjord sediments was investigated in a temperature gradient block incubator for temperatures ranging from -1 to 40°C. Community structure in intact sediments and slurry incubations was determined using Illumina SSU rRNA gene sequencing. The optimal temperature (Topt ) for denitrification was 25-27°C, whereas anammox rates were optimal at 12-17°C. Both denitrification and anammox exhibited temperature responses consistent with a psychrophilic community, but anammox bacteria may be more specialized for psychrophilic activity. Long-term (1-2 months) warming experiments indicated that temperature increases of 5-10°C above in situ had little effect on the microbial community structure or the temperature response of denitrification and anammox. Increases of 25°C shifted denitrification temperature responses to mesophilic with concurrent community shifts, and anammox activity was eliminated above 25°C. Additions of low molecular weight organic substrates (acetate and lactate) caused increases in denitrification rates, corroborating the hypothesis that the supply of organic substrates is a more dominant control of respiration rates than low temperature. These results suggest that climate-related changes in sinking particulate flux will likely alter rates of N removal more rapidly than warming.


Assuntos
Compostos de Amônio/metabolismo , Desnitrificação , Estuários , Sedimentos Geológicos/microbiologia , Temperatura , Anaerobiose , Archaea/classificação , Archaea/isolamento & purificação , Regiões Árticas , Bactérias/classificação , Bactérias/isolamento & purificação , Carbono/análise , Ciclo do Carbono , Sedimentos Geológicos/química , Nitrogênio/análise , Ciclo do Nitrogênio , Oxirredução
16.
Proc Natl Acad Sci U S A ; 108(14): 5649-54, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21402908

RESUMO

Diatoms survive in dark, anoxic sediment layers for months to decades. Our investigation reveals a correlation between the dark survival potential of marine diatoms and their ability to accumulate NO(3)(-) intracellularly. Axenic strains of benthic and pelagic diatoms that stored 11-274 mM NO(3)(-) in their cells survived for 6-28 wk. After sudden shifts to dark, anoxic conditions, the benthic diatom Amphora coffeaeformis consumed 84-87% of its intracellular NO(3)(-) pool within 1 d. A stable-isotope labeling experiment proved that (15)NO(3)(-) consumption was accompanied by the production and release of (15)NH(4)(+), indicating dissimilatory nitrate reduction to ammonium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dissimilatory nitrate reduction pathway used by a eukaryotic phototroph. Similar to large sulfur bacteria and benthic foraminifera, diatoms may respire intracellular NO(3)(-) in sediment layers without O(2) and NO(3)(-). The rapid depletion of the intracellular NO(3)(-) storage, however, implies that diatoms use DNRA to enter a resting stage for long-term survival. Assuming that pelagic diatoms are also capable of DNRA, senescing diatoms that sink through oxygen-deficient water layers may be a significant NH(4)(+) source for anammox, the prevalent nitrogen loss pathway of oceanic oxygen minimum zones.


Assuntos
Adaptação Biológica/fisiologia , Escuridão , Diatomáceas/fisiologia , Nitratos/metabolismo , Amônia/metabolismo , Anaerobiose , Diatomáceas/metabolismo , Marcação por Isótopo , Isótopos de Nitrogênio/metabolismo , Oxirredução , Análise de Sobrevida
17.
Nat Commun ; 15(1): 5293, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906896

RESUMO

Lacustrine methane emissions are strongly mitigated by aerobic methane-oxidizing bacteria (MOB) that are typically most active at the oxic-anoxic interface. Although oxygen is required by the MOB for the first step of methane oxidation, their occurrence in anoxic lake waters has raised the possibility that they are capable of oxidizing methane further anaerobically. Here, we investigate the activity and growth of MOB in Lake Zug, a permanently stratified freshwater lake. The rates of anaerobic methane oxidation in the anoxic hypolimnion reached up to 0.2 µM d-1. Single-cell nanoSIMS measurements, together with metagenomic and metatranscriptomic analyses, linked the measured rates to MOB of the order Methylococcales. Interestingly, their methane assimilation activity was similar under hypoxic and anoxic conditions. Our data suggest that these MOB use fermentation-based methanotrophy as well as denitrification under anoxic conditions, thus offering an explanation for their widespread presence in anoxic habitats such as stratified water columns. Thus, the methane sink capacity of anoxic basins may have been underestimated by not accounting for the anaerobic MOB activity.


Assuntos
Lagos , Metano , Oxirredução , Metano/metabolismo , Lagos/microbiologia , Anaerobiose , Methylococcaceae/metabolismo , Methylococcaceae/genética , Metagenômica , Oxigênio/metabolismo
18.
Environ Microbiol ; 15(7): 1943-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22830624

RESUMO

Emission of the greenhouse gas nitrous oxide (N2 O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2 O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces are important sites of N2 O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2 O emission. Nitrification and denitrification were equally important sources of N2 O in shell biofilms as revealed by (15) N-stable isotope experiments with dissected shells. Microsensor measurements confirmed that both nitrification and denitrification can occur in shell biofilms due to a heterogeneous oxygen distribution. Accordingly, ammonium, nitrite and nitrate were important drivers of N2 O production in the shell biofilm of the three mollusc species. Ammonium excretion by the animals was found to be sufficient to sustain N2 O production in the shell biofilm. Apparently, the animals provide a nutrient-enriched microenvironment that stimulates growth and N2 O production of the shell biofilm. This animal-induced stimulation was demonstrated in a long-term microcosm experiment with the snail H. reticulata, where shell biofilms exhibited the highest N2 O emission rates when the animal was still living inside the shell.


Assuntos
Biofilmes , Moluscos/microbiologia , Óxido Nitroso/metabolismo , Animais , Organismos Aquáticos , Bactérias/metabolismo , Desnitrificação , Nitrificação , Isótopos de Nitrogênio/análise , Óxido Nitroso/análise , Oxigênio/análise
19.
Nat Commun ; 14(1): 6529, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845220

RESUMO

Methylphosphonate is an organic phosphorus compound used by microorganisms when phosphate, a key nutrient limiting growth in most marine surface waters, becomes unavailable. Microbial methylphosphonate use can result in the formation of methane, a potent greenhouse gas, in oxic waters where methane production is traditionally unexpected. The extent and controlling factors of such aerobic methane formation remain underexplored. Here, we show high potential net rates of methylphosphonate-driven methane formation (median 0.4 nmol methane L-1 d-1) in the upper water column of the western tropical North Atlantic. The rates are repressed but still quantifiable in the presence of in-situ or added phosphate, suggesting that some methylphosphonate-driven methane formation persists in phosphate-replete waters. The genetic potential for methylphosphonate utilisation is present in and transcribed by key photo- and heterotrophic microbial taxa, such as Pelagibacterales, SAR116, and Trichodesmium. While the large cyanobacterial nitrogen-fixers dominate in the surface layer, phosphonate utilisation by Alphaproteobacteria appears to become more important in deeper depths. We estimate that at our study site, a substantial part (median 11%) of the measured surface carbon fixation can be sustained by phosphorus liberated from phosphonate utilisation, highlighting the ecological importance of phosphonates in the carbon cycle of the oligotrophic ocean.


Assuntos
Alphaproteobacteria , Organofosfonatos , Fósforo , Fosfatos , Metano , Água do Mar/microbiologia
20.
Proc Natl Acad Sci U S A ; 106(12): 4752-7, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19255441

RESUMO

The oxygen minimum zone (OMZ) of the Eastern Tropical South Pacific (ETSP) is 1 of the 3 major regions in the world where oceanic nitrogen is lost in the pelagic realm. The recent identification of anammox, instead of denitrification, as the likely prevalent pathway for nitrogen loss in this OMZ raises strong questions about our understanding of nitrogen cycling and organic matter remineralization in these waters. Without detectable denitrification, it is unclear how NH(4)(+) is remineralized from organic matter and sustains anammox or how secondary NO(2)(-) maxima arise within the OMZ. Here we show that in the ETSP-OMZ, anammox obtains 67% or more of NO(2)(-) from nitrate reduction, and 33% or less from aerobic ammonia oxidation, based on stable-isotope pairing experiments corroborated by functional gene expression analyses. Dissimilatory nitrate reduction to ammonium was detected in an open-ocean setting. It occurred throughout the OMZ and could satisfy a substantial part of the NH(4)(+) requirement for anammox. The remaining NH(4)(+) came from remineralization via nitrate reduction and probably from microaerobic respiration. Altogether, deep-sea NO(3)(-) accounted for only approximately 50% of the nitrogen loss in the ETSP, rather than 100% as commonly assumed. Because oceanic OMZs seem to be expanding because of global climate change, it is increasingly imperative to incorporate the correct nitrogen-loss pathways in global biogeochemical models to predict more accurately how the nitrogen cycle in our future ocean may respond.


Assuntos
Nitrogênio/metabolismo , Oxigênio/metabolismo , Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxirredução , Peru , Compostos de Amônio Quaternário/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA