Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Ecotoxicol Environ Saf ; 269: 115758, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128448

RESUMO

Aminolysis is widely recognized as a valuable chemical route for depolymerizing polymeric materials containing ester, amide, or urethane functional groups, including polyurethane foams. Bio-based polyurethane foams, pristine and reinforced with 40 wt% of sustainable fillers, were depolymerized in the presence of bio-derived butane-1,4-diamine, BDA. A process comparison was made using fossil-derived ethane-1,2-diamine, EDA, by varying amine/polyurethane ratio (F/A, 1:1 and 1:0.6). The obtained depolymerized systems were analyzed by FTIR and NMR characterizations to understand the effect of both diamines on the degradation pathway. The use of bio-based BDA seemed to be more effective with respect to conventional EDA, owing to its stronger basicity (and thus higher nucleophilicity), corresponding to faster depolymerization rates. BDA-based depolymerized systems were then employed to prepare second-generation bio-based composite polyurethane foams by partial replacement of isocyanate components (20 wt%). The morphological, mechanical, and thermal conductivity properties of the second-generation polyurethane foams were evaluated. The best performances (σ10 %=71 ± 9 kPa, λ = 0.042 ± 0.015 W∙ m-1 ∙K-1) were attained by employing the lowest F/A ratio (1:0.6); this demonstrates their potential application in different sectors such as packaging or construction, fulfilling the paradigm of the circular economy.


Assuntos
Diaminas , Poliuretanos , Aminas , Isocianatos , Amidas , Ésteres
2.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299522

RESUMO

Mesoporous silica nanostructures (MSNs) attract high interest due to their unique and tunable physical chemical features, including high specific surface area and large pore volume, that hold a great potential in a variety of fields, i.e., adsorption, catalysis, and biomedicine. An essential feature for biomedical application of MSNs is limiting MSN size in the sub-micrometer regime to control uptake and cell viability. However, careful size tuning in such a regime remains still challenging. We aim to tackling this issue by developing two synthetic procedures for MSN size modulation, performed in homogenous aqueous/ethanol solution or two-phase aqueous/ethyl acetate system. Both approaches make use of tetraethyl orthosilicate as precursor, in the presence of cetyltrimethylammonium bromide, as structure-directing agent, and NaOH, as base-catalyst. NaOH catalyzed syntheses usually require high temperature (>80 °C) and large reaction medium volume to trigger MSN formation and limit aggregation. Here, a successful modulation of MSNs size from 40 up to 150 nm is demonstrated to be achieved by purposely balancing synthesis conditions, being able, in addition, to keep reaction temperature not higher than 50 °C (30 °C and 50 °C, respectively) and reaction mixture volume low. Through a comprehensive and in-depth systematic morphological and structural investigation, the mechanism and kinetics that sustain the control of MSNs size in such low dimensional regime are defined, highlighting that modulation of size and pores of the structures are mainly mediated by base concentration, reaction time and temperature and ageing, for the homogenous phase approach, and by temperature for the two-phase synthesis. Finally, an in vitro study is performed on bEnd.3 cells to investigate on the cytotoxicity of the MNSs.

3.
Angew Chem Int Ed Engl ; 57(25): 7380-7384, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29663606

RESUMO

The photodegradation kinetics of 2-mercaptobenzothiazole (MBT), a corrosion inhibitor for copper-based alloys, is studied in high amorphous polyvinyl alcohol coatings subjected to either UV irradiation or indoor light exposure. The photodegradation process proceeds rapidly, thus compromising the anticorrosion ability of the coating. The encapsulation of MBT into layered double hydroxide (LDH) nanocarriers slows down its decomposition kinetics by a factor of three. Besides preserving the corrosion inhibitor, such a strategy allows a controlled release of MBT triggered by corrosion-related stimuli, for example, presence of chloride species and acid pH. The developed coating guarantees long-lasting corrosion protection even at low amounts of inhibitor-loaded LDH nanocarriers (ca. 5 wt %). This also reflects in a high transparency, which makes the protective coating suitable for demanding applications, such as the conservation of high-value metal works of art.

4.
Nanomaterials (Basel) ; 14(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38470745

RESUMO

Nanomaterials, due to their unique structural and functional features, are widely investigated for potential applications in a wide range of industrial sectors. In this context, protein-based nanoparticles, given proteins' abundance, non-toxicity, and stability, offer a promising and sustainable methodology for encapsulation and protection, and can be used in engineered nanocarriers that are capable of releasing active compounds on demand. Zein is a plant-based protein extracted from corn, and it is biocompatible, biodegradable, and amphiphilic. Several approaches and technologies are currently involved in zein-based nanoparticle preparation, such as antisolvent precipitation, spray drying, supercritical processes, coacervation, and emulsion procedures. Thanks to their peculiar characteristics, zein-based nanoparticles are widely used as nanocarriers of active compounds in targeted application fields such as drug delivery, bioimaging, or soft tissue engineering, as reported by others. The main goal of this review is to investigate the use of zein-based nanocarriers for different advanced applications including food/food packaging, cosmetics, and agriculture, which are attracting researchers' efforts, and to exploit the future potential development of zein NPs in the field of cultural heritage, which is still relatively unexplored. Moreover, the presented overview focuses on several preparation methods (i.e., antisolvent processes, spry drying), correlating the different analyzed methodologies to NPs' structural and functional properties and their capability to act as carriers of bioactive compounds, both to preserve their activity and to tune their release in specific working conditions.

5.
Adv Mater ; : e2403366, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651355

RESUMO

Ion conductive hydrogels are relevant components in wearable, biocompatible, and biodegradable electronics. Polyvinyl-alcohol (PVA) homopolymer is often the favored choice for integration into supercapacitors and energy harvesters as in sustainable triboelectric nanogenerators (TENGs). However, to further improve hydrogel-based TENGs, a deeper understanding of the impact of their composition and structure on devices performance is necessary. Here, it is shown how ionic hydrogels based on an amorphous-PVA (a-PVA) allow to fabricate TENGs that outperform the one based on the homopolymer. When used as tribomaterial, the Li-doped a-PVA allows to achieve a twofold higher pressure sensitivity compared to PVA, and to develop a conformable e-skin. When used as an ionic conductor encased in an elastomeric tribomaterial, 100 mW cm-2 average power is obtained, providing 25% power increase compared to PVA. At the origin of such enhancement is the increased softness, stronger adhesive contact, higher ionic mobility (> 3,5-fold increase), and long-term stability achieved with Li-doped a-PVA. These improvements are attributed to the high density of hydroxyl groups and amorphous structure present in the a-PVA, enabling a strong binding to water molecules. This work discloses novel insights on those parameters allowing to develop easy-processable, stable, and highly conductive hydrogels for integration in conformable, soft, and biocompatible TENGs.

6.
Materials (Basel) ; 16(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36902993

RESUMO

A hybrid montmorillonite (MMT)/reduced graphene oxide (rGO) film was realised and used as a non-invasive sensor for the monitoring of water absorption and desorption in pristine and consolidated tuff stones. This film was obtained by casting from a water dispersion containing graphene oxide (GO), montmorillonite and ascorbic acid; then the GO component was thermo-chemically reduced and the ascorbic acid phase was removed by washing. The hybrid film showed electrical surface conductivity that varied linearly with the relative humidity, ranging from 2.3 × 10-3 S in dry conditions to 5.0 × 10-3 S at 100% RH. The sensor was applied onto tuff stone samples through the use of a high amorphous polyvinyl alcohol layer (HAVOH) adhesive, which guaranteed good water diffusion from the stone to the film and was tested during water capillary absorption and drying tests. Results show that the sensor is able to monitor water content changes in the stone, being potentially useful to evaluate the water absorption and desorption behaviour of porous samples both in laboratory environments and in situ.

7.
Polymers (Basel) ; 15(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38006128

RESUMO

Recently, piezoresistive sensors made by 3D printing have gained considerable interest in the field of wearable electronics due to their ultralight nature, high compressibility, robustness, and excellent electromechanical properties. In this work, building on previous results on the Selective Laser Sintering (SLS) of porous systems based on thermoplastic polyurethane (TPU) and graphene (GE)/carbon nanotubes (MWCNT) as carbon conductive fillers, the effect of variables such as thickness, diameter, and porosity of 3D printed disks is thoroughly studied with the aim of optimizing their piezoresistive performance. The resulting system is a disk with a diameter of 13 mm and a thickness of 0.3 mm endowed with optimal reproducibility, sensitivity, and linearity of the electrical signal. Dynamic compressive strength tests conducted on the proposed 3D printed sensors reveal a linear piezoresistive response in the range of 0.1-2 N compressive load. In addition, the optimized system is characterized at a high load frequency (2 Hz), and the stability and sensitivity of the electrical signal are evaluated. Finally, an application test demonstrates the ability of this system to be used as a real-time wearable pressure sensor for applications in prosthetics, consumer products, and personalized health-monitoring systems.

8.
ACS Appl Polym Mater ; 5(8): 5917-5925, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588083

RESUMO

Smart polymer coatings embedding stimuli-responsive corrosion inhibitor nanocarriers are commonly exploited, in the literature, for the development of high-performance active coatings. In this work, high-surface-area amino-functionalized mesoporous silica nanoparticles (MSN-NH2) were developed with a one-step synthesis process and then functionalized with benzoyl chloride (MSN-BC) through a reaction with amino groups. MSN-BC are able to release benzoic acid (BA) in acid and alkaline conditions as a result of the hydrolysis of the pH-sensitive amide bond. MSN-BC were embedded in polymer coatings to exploit the pH-dependent release of corrosion-inhibiting BA. After an in-depth characterization of the developed functional nanoparticles and of their pH-dependent release kinetics of BA, MSN-BC were embedded in an acrylic matrix, realizing coatings for the corrosion protection of aluminum AA2024 alloys. Results demonstrate the effectiveness of the nanoparticles' porous structure for a high loading of the anticorrosive active agent BA and the long-lasting efficiency of the coating for the corrosion protection of aluminum alloys, as validated by morphological and electrochemical impedance spectroscopy (EIS) measurements. EIS experiments were carried out with up to 21 days of exposure to a corrosive environment, revealing the potentialities of the acrylic coatings embedding MSN-BC for the protection of aluminum alloys.

9.
Polymers (Basel) ; 15(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36850207

RESUMO

Currently, the scientific community has spent a lot of effort in developing "green" and environmentally friendly processes and products, due the contemporary problems connected to pollution and climate change. Cellulose nanocrystals (CNCs) are at the forefront of current research due to their multifunctional characteristics of biocompatibility, high mechanical properties, specific surface area, tunable surface chemistry and renewability. However, despite these many advantages, their inherent hydrophilicity poses a substantial challenge for the application of CNCs as a reinforcing filler in polymers, as it complicates their dispersion in hydrophobic polymeric matrices, such as polyurethane foams, often resulting in aggregate structures that compromise their properties. The manipulation and fine-tuning of the interfacial properties of CNCs is a crucial step to exploit their full potential in the development of new materials. In this respect, starting from an aqueous dispersion of CNCs, two different strategies were used to properly functionalize fillers: (i) freeze drying, solubilization in DMA/LiCl media and subsequent grafting with bio-based polyols; (ii) solvent exchange and subsequent grafting with bio-based polyols. The influence of the two functionalization methods on the chemical and thermal properties of CNCs was examined. In both cases, the role of the two bio-based polyols on filler functionalization was elucidated. Afterwards, the functionalized CNCs were used at 5 wt% to produce bio-based composite polyurethane foams and their effect on the morphological, thermal and mechanical properties was examined. It was found that CNCs modified through freeze drying, solubilization and bio-polyols grafting exhibited remarkably higher thermal stability (i.e., degradation stages > 100 °C) with respect to the unmodified freeze dried-CNCs. In addition, the use of the two grafting bio-polyols influenced the functionalization process, corresponding to different amount of grafted-silane-polyol and leading to different chemico-physical characteristics of the obtained CNCs. This was translated to higher thermal stability as well as improved functional and mechanical performances of the produced bio-based composite PUR foams with respect of the unmodified CNCs-composite ones (the best case attained compressive strength values three times more). Solvent exchange route slightly improved the thermal stability of the obtained CNCs; however; the so-obtained CNCs could not be properly dispersed within the polyurethane matrix, due to filler aggregation.

10.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679227

RESUMO

Three-dimensional printed polymers offer unprecedented advantages for prosthetic applications, namely in terms of affordability and customisation. This work thus investigates the possibility of designing an additively manufactured prosthetic foot using continuous fibre-reinforced polymers as an alternative to composite laminate ones. A numerical approach was thus proposed and validated as a possible design tool for additively manufactured composite feet. This approach was based on explicit separate simulations of the infill, aiming to capture its homogenised engineering constants. The approach was validated on simple sandwich specimens with a different infill geometry: stiffness predictions were within the experimental standard deviation for 3D simulations. Such an approach was thus applied to redesign a laminated component of a foot prosthesis inspired by a commercial one with new additive technology. The new component was about 83% thicker than the reference one, with 1.6 mm of glass fibre skins out of about 22 mm of the total thickness. Its stiffness was within 5% of the reference laminated one. Overall, this work showed how additive manufacturing could be used as a low-cost alternative to manufacturing affordable prosthetic feet.

11.
Sci Rep ; 13(1): 19126, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926746

RESUMO

Smart protective coatings and devices are currently of great interest. In particular, they can absorb or reflect harmful waves of electromagnetic interference (EMI). In this work, novel binary and ternary composites with highly amorphous poly(vinyl alcohol) (HAVOH) as a matrix and single-walled carbon nanotubes (SWCNTs) and MXenes as nanofillers were prepared. HAVOH is a recently patented kind of poly(vinyl alcohol) (PVOH) that was modified with diol monomers. MXenes are a new type of inorganic two-dimensional (2D) nanoparticle consisting of carbides, nitrides and carbonitrides. Three series of composites, HAVOH/SWCNTs, HAVOH/MXenes and HAVOH/SWCNTs/MXenes, were prepared using the solvent casting method. Samples were tested with various methods to study their structure, electrical properties, thermal behavior and EMI-shielding properties. HAVOH/3.0 wt.% SWCNTs/3.0 wt.% MXene specimens revealed a shielding effectiveness of 55 dB, which is 122 times better than that of the neat matrix. These results are promising for the fabrication of films with protective effects against EMI.

12.
ACS Sustain Chem Eng ; 11(37): 13574-13583, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37767083

RESUMO

In this study, the laser-induced graphitization process of sustainable chitosan-based formulations was investigated. In particular, optimal lasing conditions were investigated alongside the effect of borax concentration in the chitosan matrix. In all cases, it was found that the obtained formulations were graphitizable with a CO2 laser. This process gave rise to the formation of high surface area, porous, and electrically conductive laser-induced graphene (LIG) structures. It was found that borax, as a cross-linker of chitosan, enabled the graphitization process when its content was ≥30 wt % in the chitosan matrix, allowing the formation of an LIG phase with a significant content of graphite-like structures. The graphitization process was investigated by thermogravimetric analysis (TGA), Raman, X-ray photoemission (XPS), and Fourier transform infrared (FTIR) spectroscopies. LIG electrodes obtained from CS/40B formulations displayed a sheet resistance as low as 110 Ω/sq. Electrochemical characterization was performed after a 10 min electrode activation by cycling in 1 M KCl. A heterogeneous electron transfer rate, k0, of 4 × 10-3 cm s-1 was determined, indicating rapid electron transfer rates at the electrode surface. These results show promise for the introduction of a new class of sustainable composites for LIG electrochemical sensing platforms.

13.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896373

RESUMO

Prosthetic reconstruction can serve as a feasible alternative, delivering both functional and aesthetic benefits to individuals with hand and finger injuries, frequent causes of emergency room visits. Implant-related infections pose significant challenges in arthroplasty and osteosynthesis procedures, contributing to surgical failures. As a potential solution to this challenge, this study developed a new class of silver (Ag)-doped chitosan (CS) coatings via electrophoretic deposition (EPD) on osseointegrated prostheses for infection therapy. These coatings were successfully applied to additively manufactured Ti6Al4V ELI samples. In the initial phase, the feasibility of the composite coating was assessed using the Thermogravimetric Analysis (TGA) and Attenuated Total Reflection (ATR) techniques. The optimized structures exhibited impressive water uptake in the range of 300-360%. Codeposition with an antibacterial agent proved effective, and scanning electron microscopy (SEM) was used to examine the coating morphology. Biologically, CS coatings demonstrated cytocompatibility when in direct contact with a fibroblast cell line (L929) after 72 h. When exposed to the Staphylococcus epidermidis strain (ATCC 12228), these coatings inhibited bacterial growth and biofilm formation within 24 h. These findings underscore the significant potential of this approach for various applications, including endoprostheses like hip implants, internal medical devices, and transcutaneous prostheses such as osseointegrated limb prosthetics for upper and lower extremities.

14.
Carbohydr Polym ; 290: 119416, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35550784

RESUMO

Despite recent progress in graphene-based aerogels, challenges such as low mechanical strength and adsorption efficiency are still remaining. Here the reduced graphene oxide (rGO)/chitosan (CS) composite aerogel microspheres (rGCAMs) with center-diverging microchannel structures were developed by electrospraying and freeze-drying method. The optimized rGCAMs exhibit a high Young's modulus of 197 kPa and can support ~75,000 times its own weight, due to the cross-linking of CS by glutaraldehyde. Meanwhile, the rGCAMs can maintain high adsorption capacity for 15 cyclic tests due to its excellent mechanical strength. The oil adsorption kinetics and isotherms of rGCAMs follow the pseudo-second-order kinetic equation and the Langmuir model, respectively. The whole adsorption process is influenced by the oil diffusion in the liquid matrix and also in the intra-particle of aerogel microspheres. Moreover, rGCAMs can also be used to separate both surfactant-stabilized water-in-oil and oil-in-water emulsions through demulsification. The high-strength, recyclable and separation-efficient rGCAMs can be a potential candidate for oily wastewater treatment.


Assuntos
Quitosana , Poluentes Ambientais , Grafite , Poluentes Químicos da Água , Adsorção , Quitosana/química , Grafite/química , Microesferas , Óleos , Água , Poluentes Químicos da Água/química
15.
ACS Appl Polym Mater ; 4(10): 7191-7203, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277172

RESUMO

The introduction of inorganic materials into biopolymers has been envisioned as a viable option to modify the optical and structural properties of these polymers and promote their exploitation in different application fields. In this work, the growth of Al2O3 in freestanding ∼30-µm-thick poly(butylene succinate) (PBS) films by sequential infiltration (SIS) at 70 °C via trimethylaluminum (TMA) and H2O precursors was investigated for the first time. The incorporation of Al2O3 into the PBS matrix was clearly demonstrated by XPS analysis and SEM-EDX cross-sectional images showing a homogeneous Al2O3 distribution inside the PBS films. Raman measurements on infiltrated freestanding PBS show a reduction of the signal related to the ester carbonyl group as compared to pristine freestanding PBS films. Accordingly, FTIR and NMR characterization highlighted that the ester group is involved in polymer-precursor interaction, leading to the formation of an aliphatic group and the concomitant rupture of the main polymeric chain. Al2O3 mass uptake as a function of the number of SIS cycles was studied by infiltration in thin PBS films spin-coated on Si substrates ranging from 30 to 70 nm. Mass uptake in the PBS films was found to be much higher than in standard poly(methyl methacrylate) (PMMA) films, under the same process conditions. Considering that the density of reactive sites in the two polymers is roughly the same, the observed difference in Al2O3 mass uptake is explained based on the different free volume of these polymers and the specific reaction mechanism proposed for PBS. These results assessed the possibility to use SIS as a tool for the growth of metal oxides into biopolymers, paving the way to the synthesis of organic-inorganic hybrid materials with tailored characteristics.

16.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893513

RESUMO

Plasmonic nanostructures, featuring near infrared (NIR)-absorption, are rising as efficient nanosystems for in vitro photothermal (PT) studies and in vivo PT treatment of cancer diseases. Among the different materials, new plasmonic nanostructures based on Cu2-xS nanocrystals (NCs) are emerging as valuable alternatives to Au nanorods, nanostars and nanoshells, largely exploited as NIR absorbing nanoheaters. Even though Cu2-xS plasmonic properties are not linked to geometry, the role played by their size, shape and surface chemistry is expected to be fundamental for an efficient PT process. Here, Cu2-xS NCs coated with a hydrophilic mesoporous silica shell (MSS) are synthesized by solution-phase strategies, tuning the core geometry, MSS thickness and texture. Besides their loading capability, the silica shell has been widely reported to provide a more robust plasmonic core protection than organic molecular/polymeric coatings, and improved heat flow from the NC to the environment due to a reduced interfacial thermal resistance and direct electron-phonon coupling through the interface. Systematic structural and morphological analysis of the core-shell nanoparticles and an in-depth thermoplasmonic characterization by using a pump beam 808 nm laser, are carried out. The results suggest that large triangular nanoplates (NPLs) coated by a few tens of nanometers thick MSS, show good photostability under laser light irradiation and provide a temperature increase above 38 °C and a 20% PT efficiency upon short irradiation time (60 s) at 6 W/cm2 power density.

17.
ACS Appl Mater Interfaces ; 13(40): 48141-48152, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34607424

RESUMO

In this work, engineered stimuli-responsive mesoporous silica nanoparticles (MSNs) were developed and exploited in polymer coatings as multifunctional carriers of a typical corrosion inhibitor, benzotriazole (BTA). In detail, a new capping system based on a BTA-silver coordination complex, able to dissolve in acid and alkaline conditions and to simultaneously tailor the BTA release and the capture of chloride ions, was properly designed and realized. Acrylic coatings embedding the engineered MSNs were deposited onto iron rebar samples and tested for their protective capability in acid and alkaline environments. Results highlighted the high potential of the proposed system for the protection of metals, due to the synergistic effect of the mesoporous structure and the capping system, which guaranteed both the sequestration of chloride ions and the on-demand release of the effective amount of anticorrosive agents able to ensure the enhanced protection of the substrate.

18.
Nanoscale ; 13(20): 9091-9111, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33982729

RESUMO

Mesoporous silica nanoparticles (MSN) have attracted increasing interest for their applicability as smart nanocarriers of corrosion inhibitors, due to their porous structure, resistance to main corrosive environments and good compatibility with polymer coatings. In this review, the main synthetic routes to obtain MSN with tailored textural properties, the design of different loading and stimuli-induced release strategies, the development of advanced organic nanocomposite coatings with MSN and the validation of their anticorrosive performances are reviewed and compared. Through a critical analysis of the literature, the most promising research trends and perspectives to exploit the highly interesting properties of MSN in advanced organic coatings are proposed.

19.
Polymers (Basel) ; 12(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086694

RESUMO

Conductive polymer composites with carbonaceous fillers are very attractive and play a significant role in the field of electric heaters owing to their lightweight, corrosion resistance, and easy processing as well as low manufacturing cost. In this study, lightweight reduced oxide graphene/carbon nanotube/natural rubber (rGO/CNT/NR) composites were fabricated by a facile and cost-effective approach, which consists of rGO assembling on rubber latex particles and hydrogels formation due to the interaction network established between carbonaceous fillers and subsequent mild-drying of the resulting hydrogels. Thanks to the amphiphilic nature of GO sheets, which can serve as a surfactant, the hydrophobic CNTs were easily dispersed into water under ultrasound. On the basis of both the high stable rGO and CNTs suspension and the assembling of rGO on rubber latex, a three-dimensional segregated network of CNT and rGO were easily constructed in macro-porous composites. Either the segregated network and macro-porous structure endowed the resulting composites with low density (0.45 g cm-3), high electrical conductivity (0.60 S m-1), and excellent electric heating behavior, when the weight content of rGO and CNTs are 0.5% and 2.5%, respectively. For electric heating behavior, the steady-state temperature of the above composites reaches 69.1 °C at an input voltage of 15 V.

20.
Polymers (Basel) ; 12(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143314

RESUMO

The reduced graphene oxide (rGO) modified natural rubber composite (NR) filled with high contents of silica was prepared by a wet compounding and latex mixing process using a novel interface modifier cystamine dihydrochloride (CDHC) with coagulation ability. CDHC acts as a coagulation agent through electrostatic interaction with rGO, SiO2, and latex rubber particles during the latex-based preparation process, while in the obtained silica/graphene/natural rubber composites, CDHC acts as an interface modifier. Compared with the composites prepared by the conventional mechanical mixing method, the dispersion of both rGO and SiO2 in the composites made by a wet compounding and latex mixing process is improved. As a result, the obtained silica/graphene/natural rubber composite prepared by this new method has good comprehensive properties. A Dynamic Mechanical Test suggests that the tan δ values of the composites at 60 °C decrease, indicating a low rolling resistance with increasing the graphene content at a low strain, but it increases at a higher strain. This unique feature for this material provides an advantage in the rubber tire application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA