Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 193(1): 304-321, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37195145

RESUMO

As a fundamental metabolic pathway, autophagy plays important roles in plant growth and development, particularly under stress conditions. A set of autophagy-related (ATG) proteins is recruited for the formation of a double-membrane autophagosome. Among them, the essential roles of ATG2, ATG18, and ATG9 have been well established in plant autophagy via genetic analysis; however, the underlying molecular mechanism for ATG2 in plant autophagosome formation remains poorly understood. In this study, we focused on the specific role of ATG2 in the trafficking of ATG18a and ATG9 during autophagy in Arabidopsis (Arabidopsis thaliana). Under normal conditions, YFP-ATG18a proteins are partially localized on late endosomes and translocated to ATG8e-labeled autophagosomes upon autophagic induction. Real-time imaging analysis revealed sequential recruitment of ATG18a on the phagophore membrane, showing that ATG18a specifically decorated the closing edges and finally disassociated from the completed autophagosome. However, in the absence of ATG2, most of the YFP-ATG18a proteins are arrested on autophagosomal membranes. Ultrastructural and 3D tomography analysis showed that unclosed autophagosome structures are accumulated in the atg2 mutant, displaying direct connections with the endoplasmic reticulum membrane and vesicular structures. Dynamic analysis of ATG9 vesicles suggested that ATG2 depletion also affects the association between ATG9 vesicles and the autophagosomal membrane. Furthermore, using interaction and recruitment analysis, we mapped the interaction relationship between ATG2 and ATG18a, implying a possible role of ATG18a in recruiting ATG2 and ATG9 to the membrane. Our findings unveil a specific role of ATG2 in coordinating ATG18a and ATG9 trafficking to mediate autophagosome closure in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Saccharomyces cerevisiae , Autofagossomos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/análise , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/metabolismo , Autofagia/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Arabidopsis/metabolismo
2.
Methods Mol Biol ; 2841: 189-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115778

RESUMO

Macroautophagy, hereafter autophagy, plays a crucial role in the degradation of harmful or unwanted cellular components through a double-membrane autophagosome. Upon autophagosome fusion with the vacuole, the degraded materials are subsequently recycled to generate macromolecules, contributing to cellular homeostasis, metabolism, and stress tolerance in plants. A hallmark during autophagy is the formation of isolation membrane structure named as phagophore, which undergoes multiple steps to become as a complete double-membrane autophagosome. Methodologies have been developed in recent years to observe and quantify the autophagic process, which greatly advance knowledge of autophagosome biogenesis in plant cells. In this chapter, we will introduce two methods to dissect the autophagosome-related structures in the Arabidopsis plant cells, including the correlative light and electron microscopy, to map the ultrastructural feature of autophagosomal structures, and time-lapse imaging to monitor the temporal recruitment of autophagy machinery during autophagosome formation.


Assuntos
Arabidopsis , Autofagossomos , Autofagia , Células Vegetais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Autofagia/fisiologia , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Imagem com Lapso de Tempo/métodos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Microscopia Eletrônica/métodos
3.
Front Plant Sci ; 13: 826007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283904

RESUMO

Endomembrane trafficking is an evolutionarily conserved process for all eukaryotic organisms. It is a fundamental and essential process for the transportation of proteins, lipids, or cellular metabolites. The aforementioned cellular components are sorted across multiple membrane-bounded organelles. In plant cells, the endomembrane mainly consists of the nuclear envelope, endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network or early endosome (TGN/EE), prevacuolar compartments or multivesicular bodies (PVCs/MVBs), and vacuole. Among them, Golgi apparatus and TGN represent two central sorting intermediates for cargo secretion and recycling from other compartments by anterograde or retrograde trafficking. Several protein sorting machineries have been identified to function in these pathways for cargo recognition and vesicle assembly. Exciting progress has been made in recent years to provide novel insights into the sorting complexes and also the underlying sorting mechanisms in plants. Here, we will highlight the recent findings for the adaptor protein (AP) complexes, retromer, and retriever complexes, and also their functions in the related coated vesicle formation in post-Golgi trafficking.

4.
Autophagy ; 18(6): 1350-1366, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34657568

RESUMO

In selective macroautophagy/autophagy, cargo receptors are recruited to the forming autophagosome by interacting with Atg8 (autophagy-related 8)-family proteins and facilitate the selective sequestration of specific cargoes for autophagic degradation. In addition, Atg8 interacts with a number of adaptors essential for autophagosome biogenesis, including ATG and non-ATG proteins. The majority of these adaptors and receptors are characterized by an Atg8-family interacting motif (AIM) for binding to Atg8. However, the molecular basis for the interaction mode between ATG8 and regulators or cargo receptors in plants remains largely unclear. In this study, we unveiled an atypical interaction mode for Arabidopsis ATG8f with a plant unique adaptor protein, SH3P2 (SH3 domain-containing protein 2), but not with the other two SH3 proteins. By structure analysis of the unbound form of ATG8f, we identified the unique conformational changes in ATG8f upon binding to the AIM sequence of a plant known autophagic receptor, NBR1. To compare the binding affinity of SH3P2-ATG8f with that of ATG8f-NBR1, we performed a gel filtration assay to show that ubiquitin-associated domain of NBR1 outcompetes the SH3 domain of SH3P2 for ATG8f interaction. Biochemical and cellular analysis revealed that distinct interfaces were employed by ATG8f to interact with NBR1 and SH3P2. Further subcellular analysis showed that the AIM-like motif of SH3P2 is essential for its recruitment to the phagophore membrane but is dispensable for its trafficking in endocytosis. Taken together, our study provides an insightful structural basis for the ATG8 binding specificity toward a plant-specific autophagic adaptor and a conserved autophagic receptor.Abbreviations: ATG, autophagy-related; AIM, Atg8-family interacting motif; BAR, Bin-Amphiphysin-Rvs; BFA, brefeldin A; BTH, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester; CCV, clathrin-coated-vesicle; CLC2, clathrin light chain 2; Conc A, concanamycin A; ER, endoplasmic reticulum; LDS, LIR docking site; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; LIR, LC3-interacting region; PE, phosphatidylethanolamine; SH3P2, SH3 domain containing protein 2; SH3, Src-Homology-3; UBA, ubiquitin-associated; UIM, ubiquitin-interacting motif.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Autofagossomos/metabolismo , Autofagia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA