Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445581

RESUMO

Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a master regulator of metabolism, adipogenesis, inflammation and cell cycle, and it has been extensively studied in the brain in relation to inflammation or neurodegeneration. Little is known however about its role in viral infections of the brain parenchyma, although they represent the most frequent cause of encephalitis and are a major threat for the developing brain. Specific to viral infections is the ability to subvert signaling pathways of the host cell to ensure virus replication and spreading, as deleterious as the consequences may be for the host. In this respect, the pleiotropic role of PPARγ makes it a critical target of infection. This review aims to provide an update on the role of PPARγ in viral infections of the brain. Recent studies have highlighted the involvement of PPARγ in brain or neural cells infected by immunodeficiency virus 1, Zika virus, or human cytomegalovirus. They have provided a better understanding on PPARγ functions in the infected brain, and revealed that it can be a double-edged sword with respect to inflammation, viral replication, or neuronogenesis. They unraveled new roles of PPARγ in health and disease and could possibly help designing new therapeutic strategies.


Assuntos
Encefalopatias/patologia , Encefalite/patologia , PPAR gama/metabolismo , Infecção por Zika virus/complicações , Zika virus/isolamento & purificação , Animais , Encefalopatias/etiologia , Encefalopatias/metabolismo , Encefalite/etiologia , Encefalite/metabolismo , Humanos , Transdução de Sinais , Infecção por Zika virus/virologia
2.
Adv Funct Mater ; 30(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32952493

RESUMO

The therapeutic benefits of mesenchymal stromal cell (MSC) transplantation have been attributed to their secreted factors, including extracellular vesicles (EVs) and soluble factors. The potential of employing the MSC secretome as an alternative acellular approach to cell therapy is being investigated in various tissue injury indications, but EVs administered via bolus injections are rapidly sequestered and cleared. However, biomaterials offer delivery platforms to enhance EV retention rates and healing efficacy. In this review, we highlight the mechanisms underpinning the therapeutic effects of MSC-EVs and soluble factors as effectors of immunomodulation and tissue regeneration, conferred primarily via their nucleic acid and protein contents. We discuss how manipulating the cell culture microenvironment or genetic modification of MSCs can further augment the potency of their secretions. The most recent advances in the development of EV-functionalized biomaterials that mediate enhanced angiogenesis and cell survival, while attenuating inflammation and fibrosis, are presented. Finally, some technical challenges to be considered for the clinical translation of biomaterials carrying MSC-secreted bioactive cargo are discussed.

3.
Stem Cells ; 37(8): 1083-1094, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30977188

RESUMO

The general population is chronically exposed to multiple environmental contaminants such as pesticides. We have previously demonstrated that human mesenchymal stem cells (MSCs) exposed in vitro to low doses of a mixture of seven common pesticides showed a permanent phenotype modification with a specific induction of an oxidative stress-related senescence. Pesticide mixture also induced a shift in MSC differentiation toward adipogenesis. Thus, we hypothesized that common combination of pesticides may induce a premature cellular aging of adult MSCs. Our goal was to evaluate if the prolonged exposure to pesticide mixture could accelerate aging-related markers and in particular deteriorate the immunosuppressive properties of MSCs. MSCs exposed to pesticide mixture, under long-term culture and obtained from aging donor, were compared by bulk RNA sequencing analysis. Aging, senescence, and immunomodulatory markers were compared. The protein expression of cellular aging-associated metabolic markers and immune function of MSCs were analyzed. Functional analysis of the secretome impacts on immunomodulatory properties of MSCs was realized after 21 days' exposure to pesticide mixture. The RNA sequencing analysis of MSCs exposed to pesticide showed some similarities with cells from prolonged culture, but also with the MSCs of an aged donor. Changes in the metabolic markers MDH1, GOT and SIRT3, as well as an alteration in the modulation of active T cells and modifications in cytokine production are all associated with cellular aging. A modified functional profile was found with similarities to aging process. Stem Cells 2019;37:1083-1094.


Assuntos
Envelhecimento , Antígenos de Diferenciação/metabolismo , Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Praguicidas/efeitos adversos , Adulto , Idoso , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Praguicidas/farmacologia
4.
Clin Oral Implants Res ; 31(6): 526-535, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32058629

RESUMO

OBJECTIVES: It is well known that surface treatments of dental implants have a great impact on their rate of osseointegration. The aim of this study was to compare the biocompatibility and the bone-implant contact (BIC) of titanium dental implants with different surface treatments. MATERIAL AND METHODS: Test implants (Biotech Dental) had a nanostructured surface and control implants (Anthogyr) were grit-blasted with biphasic calcium phosphate and acid-etched surface. Both titanium implants were inserted in mandible and maxillary bones of 6 Yucatan minipigs for 4 and 12 weeks (n = 10 implants/group). Biocompatibility and osseointegration were evaluated by non-decalcified histology and back-scattered electron microscopy images. RESULTS: The reading of histology sections by an antomo-pathologist indicated that the test implants were considered non-irritating to the surrounding tissues and thus biocompatible compared with control implants. The BIC values were higher for test than for control dental implants at both 4 and 12 weeks. CONCLUSIONS: In summary, the new nanostructured titanium dental implant is considered biocompatible and showed a better osseointegration than the control implant at both 4 and 12 weeks.


Assuntos
Implantes Dentários , Osseointegração , Animais , Implantação Dentária Endóssea , Planejamento de Prótese Dentária , Propriedades de Superfície , Suínos , Porco Miniatura , Titânio
5.
Cytotherapy ; 21(8): 870-885, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31272868

RESUMO

BACKGROUND: Safety and feasibility of a regenerative strategy based on the use of culture-expanded mesenchymal stromal cells (MSCs) have been investigated in phase 2 trials for the treatment of nonunion and osteonecrosis of the femoral head (ONFH). As part of the clinical study, we aimed to evaluate if bone turnover markers (BTMs) could be useful for predicting the regenerative ability of the cell therapy product. MATERIALS AND METHODS: The bone defects of 39 patients (nonunion: n = 26; ONFH: n = 13) were treated with bone marrow-derived MSCs, expanded using a clinical-grade protocol and combined with biphasic calcium phosphate before implantation. Bone formation markers, bone-resorption markers and osteoclast regulatory proteins were measured before treatment (baseline) and after 12 and 24 weeks from surgery. At the same time-points, clinical and radiological controls were performed to evaluate the bone-healing progression. RESULTS: We found that C-Propeptide of Type I Procollagen (CICP) and C-terminal telopeptide of type-I collagen (CTX) varied significantly, not only over time, but also according to clinical results. In patients with a good outcome, CICP increased and CTX decreased, and this trend was observed in both nonunion and ONFH. Moreover, collagen biomarkers were able to discriminate healed patients from non-responsive patients with a good diagnostic accuracy. DISCUSSION: CICP and CTX could be valuable biomarkers for monitoring and predicting the regenerative ability of cell products used to stimulate the repair of refractory bone diseases. To be translated in a clinical setting, these results are under validation in a currently ongoing phase 3 clinical trial.


Assuntos
Biomarcadores/sangue , Regeneração Óssea/fisiologia , Necrose da Cabeça do Fêmur/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Adulto , Biomarcadores/metabolismo , Células da Medula Óssea , Reabsorção Óssea/metabolismo , Colágeno Tipo I/sangue , Colágeno Tipo I/metabolismo , Feminino , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/patologia , Humanos , Hidroxiapatitas/uso terapêutico , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Osteoclastos/fisiologia , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/metabolismo , Peptídeos/sangue , Peptídeos/metabolismo , Pró-Colágeno/sangue , Pró-Colágeno/metabolismo
6.
Cytotherapy ; 21(4): 468-482, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30926359

RESUMO

BACKGROUND: Many data are available on expansion protocols for mesenchymal stromal cells (MSCs) for both experimental settings and manufacturing for clinical trials. However, there is a lack of information on translation of established protocols for Good Manufacturing Practice (GMP) from validation to manufacturing for clinical application. We present the validation and translation of a standardized pre-clinical protocol for isolation and expansion of MSCs for a clinical trial for reconstitution of alveolar bone. METHODS: Key parameters of 22 large-scale expansions of MSCs from bone marrow (BM) for validation were compared with 11 expansions manufactured for the clinical trial "Jaw bone reconstruction using a combination of autologous mesenchymal stromal cells and biomaterial prior to dental implant placement (MAXILLO1)" aimed at reconstruction of alveolar bone. RESULTS: Despite variations of the starting material, the robust protocol led to stable performance characteristics of expanded MSCs. Manufacturing of the autologous advanced therapy medicinal product MAXILLO-1-MSC was possible, requiring 21 days for each product. Transport of BM aspirates and MSCs within 24 h was guaranteed. MSCs fulfilled quality criteria requested by the national competent authority. In one case, the delivered MSCs developed a mosaic in chromosomal finding, showing no abnormality in differentiation capacity, growth behavior or surface marker expression during long-term culture. The proportion of cells with the mosaic decreased in long-term culture and cells stopped growth after 38.4 population doublings. CONCLUSIONS: Clinical use of freshly prepared MSCs, manufactured according to a standardized and validated protocol, is feasible for bone regeneration, even if there was a long local distance between manufacturing center and clinical site. Several parameters, such as colony forming units fibroblasts (CFU-F), percentage of CD34+ cells, cell count of mononuclear cells (MNCs) and white blood cells (WBCs), of the BM may serve as a predictive tool for the yield of MSCs and may help to avoid unnecessary costs for MSC manufacturing due to insufficient cell expansion rates.


Assuntos
Técnicas de Cultura de Células/normas , Células-Tronco Mesenquimais/citologia , Pesquisa Translacional Biomédica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/citologia , Contagem de Células , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Cariotipagem , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Doadores de Tecidos , Adulto Jovem
7.
J Clin Periodontol ; 46 Suppl 21: 82-91, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31215114

RESUMO

BACKGROUND AND AIMS: To review the regenerative technologies used in bone regeneration: bone grafts, barrier membranes, bioactive factors and cell therapies. MATERIAL AND METHODS: Four background review publications served to elaborate this consensus report. RESULTS AND CONCLUSIONS: Biomaterials used as bone grafts must meet specific requirements: biocompatibility, porosity, osteoconductivity, osteoinductivity, surface properties, biodegradability, mechanical properties, angiogenicity, handling and manufacturing processes. Currently used biomaterials have demonstrated advantages and limitations based on the fulfilment of these requirements. Similarly, membranes for guided bone regeneration (GBR) must fulfil specific properties and potential biological mechanisms to improve their clinical applicability. Pre-clinical and clinical studies have evaluated the added effect of bone morphogenetic proteins (mainly BMP-2) and autologous platelet concentrates (APCs) when used as bioactive agents to enhance bone regeneration. Three main approaches using cell therapies to enhance bone regeneration have been evaluated: (a) "minimally manipulated" whole tissue fractions; (b) ex vivo expanded "uncommitted" stem/progenitor cells; and (c) ex vivo expanded "committed" bone-/periosteum-derived cells. Based on the evidence from clinical trials, transplantation of cells, most commonly whole bone marrow aspirates (BMA) or bone marrow aspirate concentrations (BMAC), in combination with biomaterial scaffolds has demonstrated an additional effect in sinus augmentation and horizontal ridge augmentation, and comparable bone regeneration to autogenous bone in alveolar cleft repair.


Assuntos
Aumento do Rebordo Alveolar , Materiais Biocompatíveis , Regeneração Óssea , Transplante Ósseo , Consenso , Regeneração Tecidual Guiada Periodontal
8.
Int J Mol Sci ; 20(22)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717935

RESUMO

BACKGROUND: Considering the positive or negative potential effects of adipocytes, depending on their lipid composition, on breast tumor progression, it is important to evaluate whether adipose tissue (AT) harvesting procedures, including epinephrine infiltration, may influence breast cancer progression. METHODS: Culture medium conditioned with epinephrine-infiltrated adipose tissue was tested on human Michigan Cancer Foundation-7 (MCF7) breast cancer cells, cultured in monolayer or in oncospheres. Lipid composition was evaluated depending on epinephrine-infiltration for five patients. Epinephrine-infiltrated adipose tissue (EI-AT) or corresponding conditioned medium (EI-CM) were injected into orthotopic breast carcinoma induced in athymic mouse. RESULTS: EI-CM significantly increased the proliferation rate of MCF7 cells Moreover EI-CM induced an output of the quiescent state of MCF7 cells, but it could be either an activator or inhibitor of the epithelial mesenchymal transition as indicated by gene expression changes. EI-CM presented a significantly higher lipid total weight compared with the conditioned medium obtained from non-infiltrated-AT of paired-patients. In vivo, neither the EI-CM or EI-AT injection significantly promoted MCF7-induced tumor growth. CONCLUSIONS: Even though conditioned media are widely used to mimic the secretome of cells or tissues, they may produce different effects on tumor progression, which may explain some of the discrepancy observed between in vitro, preclinical and clinical data using AT samples.


Assuntos
Tecido Adiposo/metabolismo , Proliferação de Células/efeitos dos fármacos , Epinefrina/farmacologia , Metabolismo dos Lipídeos , Neoplasias Mamárias Experimentais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/normas
9.
Calcif Tissue Int ; 103(6): 653-662, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30076439

RESUMO

Osteogenesis imperfecta (OI) is a rare heritable skeletal dysplasia mainly caused by type I collagen abnormalities and characterized by bone fragility and susceptibility to fracture. Over 85% of the patients carry dominant mutations in the genes encoding for the collagen type I α1 and α2 chains. Failure of bone union and/or presence of hyperplastic callus formation after fracture were described in OI patients. Here we used the Col1a2+/G610C mouse, carrying in heterozygosis the α2(I)-G610C substitution, to investigate the healing process of an OI bone. Tibiae of 2-month-old Col1a2+/G610C and wild-type littermates were fractured and the healing process was followed at 2, 3, and 5 weeks after injury from fibrous cartilaginous tissue formation to its bone replacement by radiography, micro-computed tomography (µCT), histological and biochemical approaches. In presence of similar fracture types, in Col1a2+/G610C mice an impairment in the early phase of bone repair was detected compared to wild-type littermates. Smaller callus area, callus bone surface, and bone volume associated to higher percentage of cartilage and lower percentage of bone were evident in Col1a2+/G610C at 2 weeks post fracture (wpf) and no change by 3 wpf. Furthermore, the biochemical analysis of collagen extracted from callus 2 wpf revealed in mutants an increased amount of type II collagen, typical of cartilage, with respect to type I, characteristic of bone. This is the first report of a delay in OI bone fracture repair at the modeling phase.


Assuntos
Colágeno Tipo I/genética , Consolidação da Fratura/genética , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Animais , Modelos Animais de Doenças , Camundongos , Mutação
10.
Int J Mol Sci ; 19(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494553

RESUMO

Osteosarcoma (OS) is suspected to originate from dysfunctional mesenchymal stromal/stem cells (MSC). We sought to identify OS-derived cells (OSDC) with potential cancer stem cell (CSC) properties by comparing OSDC to MSC derived from bone marrow of patients. This study included in vitro characterization with sphere forming assays, differentiation assays, cytogenetic analysis, and in vivo investigations of their tumorigenicity and tumor supportive capacities. Primary cell lines were isolated from nine high-grade OS samples. All primary cell lines demonstrated stromal cell characteristics. Compared to MSC, OSDC presented a higher ability to form sphere clones, indicating a potential CSC phenotype, and were more efficient at differentiation towards osteoblasts. None of the OSDC displayed the complex chromosome rearrangements typical of high grade OS and none of them induced tumors in immunodeficient mice. However, two OSDC demonstrated focused genomic abnormalities. Three out of seven, and six out of seven OSDC showed a supportive role on local tumor development, and on metastatic progression to the lungs, respectively, when co-injected with OS cells in nude mice. The observation of OS-associated stromal cells with rare genetic abnormalities and with the capacity to sustain tumor progression may have implications for future tumor treatments.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Microambiente Tumoral , Adolescente , Adulto , Biomarcadores , Medula Óssea/patologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Imunofenotipagem , Cariótipo , Masculino , Células-Tronco Mesenquimais/patologia , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/patologia , Adulto Jovem
11.
Ann Rheum Dis ; 76(7): 1304-1312, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28288964

RESUMO

OBJECTIVES: Interleukin (IL)-38 is a newly characterised cytokine that belongs to the IL-1 family. This cytokine is expressed in the rheumatoid arthritis (RA) synovial tissue and IL-38 deficient mice have exacerbated arthritis. Here, we analysed the effect of IL-38 overexpression in the joints of arthritic mice, in human macrophages and synovial fibroblasts in vitro. METHODS: Articular injections of an adeno-associated virus (AAV) 2/8 encoding IL-38 were performed in collagen-induced arthritis (CIA), K/BxN serum transfer-induced arthritis (STIA) and antigen-induced arthritis (AIA) in mice. The effect of IL-38 overexpression was evaluated through clinical scores, immunohistochemistry, microCT, Luminex and RT-qPCR analysis. THP-1 macrophages were transduced with a lentiviral vector to overexpress IL-38. RESULTS: Clinical inflammatory scores were significantly decreased after AAV IL-38 injection in joints of mice with CIA and STIA, but not AIA. This decrease was accompanied by reduced macrophage infiltration and a decreased expression of Th17 cytokines (IL-17, IL-23, IL-22) and TNFα. However, IL-38 overexpression had no effect on cartilage or bone destruction. In vitro, the THP-1 monocytic cell line expressed less IL-6, TNFα and IL-23 after IL-38 overexpression. Conditioned media from these cells, containing released IL-38, also exert an anti-inflammatory effect on human primary macrophages and synovial fibroblasts from patients with RA. CONCLUSIONS: This study shows for the first time that IL-38 overexpression attenuates the severity of experimental arthritis. IL-38 may exert its anti-inflammatory effects by decreasing the production of proinflammatory cytokines by macrophages and synovial fibroblasts. This effect can lead to the development of novel treatment strategies in arthritis.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Fibroblastos/imunologia , Interleucinas/imunologia , Macrófagos/imunologia , Animais , Artrite Experimental/genética , Western Blotting , Osso e Ossos/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Linhagem Celular , Meios de Cultivo Condicionados , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-23/genética , Interleucina-23/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucinas/genética , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Membrana Sinovial/citologia , Células Th17/imunologia , Transcriptoma , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Microtomografia por Raio-X , Interleucina 22
12.
Clin Oral Implants Res ; 28(10): e201-e207, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27770468

RESUMO

AIMS: The primary objective of this study was to compare the in vivo performance, namely in terms of quantity of newly formed bone and bone-to-material contact (osteoconductivity), of three hydroxyapatite-based biomaterials (HA) of different origins (natural or synthetic) or manufacturing process in a sinus lift model in rabbits. The secondary objective was to correlate the findings with the physical and topographical characteristics of the biomaterials. MATERIALS AND METHODS: Two bovine HA manufactured with different processes (bovine hydroxyapatites [BHA] and cuttlebone hydroxyapatite [CBHA]) and a synthetic hydroxyapatite (SHA) sintered at high temperature were characterised with scanning electronic microscopy (SEM) and the measurement of specific surface area (BET). The materials were implanted in a sinus lift model in rabbits; histological and histomorphometric evaluation using non-decalcified sections was performed at 1, 5 and 12 weeks after implantation. RESULTS: The studied biomaterials displayed a different surface topography. The two natural HA displayed significantly higher bone quantities (P = 0.0017; BHA vs. SHA, P = 0.0018 and CBHA vs. SHA, P = 0.033) at 5 and 12 weeks compared to the synthetic one (SHA). Moreover, the osteoconductivity (bone-to-material contact) was significantly higher in the BHA group compared to the two other groups (P = 0.014; BHA vs. SHA, P = 0.023 and BHA vs. CBHA, P = 0.033). CONCLUSION: HA-based biomaterials from diverse origins and manufacturing processes displayed different topographical characteristics. This may have influenced different regenerated bone architecture observed; more bone was found with natural HA compared to the synthetic one, and significantly higher bone-to-material contacts were found with BHA.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Substitutos Ósseos , Durapatita , Minerais , Animais , Masculino , Coelhos , Propriedades de Superfície
13.
Cell Tissue Bank ; 18(1): 17-25, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27999996

RESUMO

The human amniotic membrane (hAM) has been successfully used as a natural carrier containing amniotic mesenchymal stromal cells, epithelial cells and growth factors. It has a little or no immunogenicity, and possesses useful anti-microbial, anti-inflammatory, anti-fibrotic and analgesic properties. It has been used for many years in several indications for soft tissue repair. We previously reported that hAM represents a natural and preformed sheet containing highly potent stem cells, and could thus be used for bone repair. Indeed, native hAM possesses pre-osteoblastic potential that can easily be stimulated, even as far as mineralization, by means of in vitro osteogenic culture. However, cell culture induces damage to the tissue, as well as to cell phenotype and function. The aim of this study was to evaluate new bone formation by fresh and in vitro osteodifferentiated hAM, alone or associated with an additional scaffold presenting osteoinductive properties. Moreover, we also aimed to determine the effect of in vitro hAM pre-osteodifferentiation on its in vivo biocompatibility/tissue degradation. Results showed that neither fresh nor osteodifferentiated hAM induced ectopic bone formation, whether or not it was associated with the osteoinductive scaffold. Secondly, fresh and osteodifferentiated hAM presented similar in vivo tissue degradation, suggesting that in vitro hAM pre-osteodifferentiation did not influence its in vivo biocompatibility.


Assuntos
Âmnio/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Osteogênese , Animais , Substitutos Ósseos/química , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Camundongos Endogâmicos BALB C , Alicerces Teciduais/química
14.
Am J Pathol ; 185(3): 765-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25559270

RESUMO

Different macrophage depletion strategies have demonstrated a vital role of macrophages in bone healing, but the underlying molecular mechanisms are poorly understood. Here, with the use of a mouse model of tibia injury, we found that the cytokine oncostatin M [OSM or murine (m)OSM] was overexpressed during the initial inflammatory phase and that depletion of macrophages repressed mOSM expression. In Osm(-/-) mice, by micro-computed tomography and histology we observed a significant reduction in the amount of new intramedullar woven bone formed at the injured site, reduced number of Osterix(+) osteoblastic cells, and reduced expression of the osteoblast markers runt-related transcription factor 2 and alkaline phosphatase. In contrast, osteoclasts were normal throughout the healing period. One day after bone injury, Stat3, the main transcription factor activated by mOSM, was found phosphorylated/activated in endosteal osteoblastic cells located at the hedge of the hematoma. Interestingly, we observed reduced activation of Stat3 in Osm(-/-) mice. In addition, mice deficient in the mOSM receptor (Osmr(-/-)) also had reduced bone formation and osteoblast number within the injury site. These results suggest that mOSM, a product of macrophages, sustains intramembranous bone formation by signaling through Osmr and Stat3, acting on the recruitment, proliferation, and/or osteoblast differentiation of endosteal mesenchymal progenitor cells. Because bone resorption is largely unaltered, OSM could represent a new anabolic treatment for unconsolidated bone fractures.


Assuntos
Oncostatina M/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Tíbia/lesões , Fosfatase Alcalina/metabolismo , Animais , Reabsorção Óssea/metabolismo , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Macrófagos/metabolismo , Camundongos , Osteogênese , Receptores de Oncostatina M/metabolismo , Fator de Transcrição STAT3/metabolismo , Tíbia/metabolismo
15.
Clin Sci (Lond) ; 127(5): 277-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24827940

RESUMO

Aseptic loosening as a result of wear debris is considered to be the main cause of long-term implant failure in orthopaedic surgery and improved biomaterials for bearing surfaces decreases significantly the release of micrometric wear particles. Increasingly, in-depth knowledge of osteoimmunology highlights the role of nanoparticles and ions released from some of these new bearing couples, opening up a new era in the comprehension of aseptic loosening. Mouse models have been essential in the progress made in the early comprehension of pathophysiology and in testing new therapeutic agents for particle-induced osteolysis. However, despite this encouraging progress, there is still no valid clinical alternative to revision surgery. The present review provides an update of the most commonly used bearing couples, the current concepts regarding particle-cell interactions and the approaches used to study the biology of periprosthetic osteolysis. It also discusses the contribution and future challenges of mouse models for successful translation of the preclinical progress into clinical applications.


Assuntos
Artroplastia de Substituição/efeitos adversos , Macrófagos/fisiologia , Osteólise/etiologia , Animais , Fenômenos Biomecânicos , Cerâmica/efeitos adversos , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Falha de Equipamento , Humanos , Inflamação/fisiopatologia , Camundongos , Nanopartículas/efeitos adversos , Osteólise/fisiopatologia , Tamanho da Partícula , Polietilenos/efeitos adversos , Polietilenos/química , Polimetil Metacrilato/efeitos adversos , Reoperação , Pesquisa Translacional Biomédica
16.
J Mater Sci Mater Med ; 25(8): 1941-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24818874

RESUMO

The aim of this study was to analyse the stability and osseointegration of surface treated titanium implants in rabbit femurs. The implants were either grit-blasted and acid-etched (BE Group), calcium phosphate (CaP) coated by using the electrodeposition technique, or had bioactive molecules incorporated into the CaP coatings: either cyclic adenosine monophosphate (cAMP) or dexamethasone (Dex). Twenty four cylindrical titanium implants (n = 6/group) were inserted bilaterally into the femoral epiphyses of New Zealand White, female, adult rabbits for 4 weeks. Implant stability was measured by resonance frequency analysis (RFA) the day of implantation and 4 weeks later, and correlated to histomorphometric parameters, bone implant contact (BIC) and bone growth around the implants (BS/TS 0.5 mm). The BIC values for the four groups were not significantly different. That said, histology indicated that the CaP coatings improved bone growth around the implants. The incorporation of bioactive molecules (cAMP and Dex) into the CaP coatings did not improve bone growth compared to the BE group. Implant stability quotients (ISQ) increased in each group after 4 weeks of healing but were not significantly different between the groups. A good correlation was observed between ISQ and BS/TS 0.5 mm indicating that RFA is a non-invasive method that can be used to assess the osseointegration of implants. In conclusion, the CaP coating enhanced bone formation around the implants, which was correlated to stability measured by resonance frequency analysis. Furthers studies need to be conducted in order to explore the benefits of incorporating bioactive molecules into the coatings for peri-implant bone healing.


Assuntos
Epífises/fisiopatologia , Fêmur/fisiopatologia , Consolidação da Fratura , Próteses e Implantes , Titânio , Ligas , Animais , Feminino , Microscopia Eletrônica de Varredura , Osseointegração , Coelhos , Propriedades de Superfície
17.
Biomedicines ; 12(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540197

RESUMO

Optic neuropathies are characterized by the degeneration of the optic nerves and represent a considerable individual and societal burden. Notably, Leber's hereditary optic neuropathy (LHON) is a devastating vision disease caused by mitochondrial gene mutations that hinder oxidative phosphorylation and increase oxidative stress, leading to the loss of retinal ganglion neurons and axons. Loss of vision is rapid and severe, predominantly in young adults. Penetrance is incomplete, and the time of onset is unpredictable. Recent findings revealed that the incidence of genetic LHON susceptibility is around 1 in 1000, much higher than believed till now. Environmental factors are critical in LHON triggering or severity. Families at risk have a very strong demand for how to prevent the onset or limit the severity of the disease. Here, we review recent knowledge of the extrinsic determinants of LHON expression, including lifestyle, dietary supplements, common chemicals, and drugs.

18.
Acta Biomater ; 176: 417-431, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272200

RESUMO

Human mesenchymal stromal cells (hMSCs) seeded on calcium phosphate (CaP) bioceramics are extensively explored in bone tissue engineering and have recently shown effective clinical outcomes. In previous pre-clinical studies, hMSCs-CaP-mediated bone formation was preceded by osteoclastogenesis at the implantation site. The current study evaluates to what extent phase composition of CaPs affects the osteoclast response and ultimately influence bone formation. To this end, four different CaP bioceramics were used, hydroxyapatite (HA), ß-tricalcium phosphate (ß-TCP) and two biphasic composites of HA/ß-TCP ratios of 60/40 and 20/80 respectively, for in vitro osteoclast differentiation and correlation with in vivo osteoclastogenesis and bone formation. All ceramics allowed osteoclast formation in vitro from mouse and human precursors, except for pure HA, which significantly impaired their maturation. Ectopic implantation alongside hMSCs in subcutis sites of nude mice revealed new bone formation at 8 weeks in all conditions with relative amounts for ß-TCP > biphasic CaPs > HA. Surprisingly, while hMSCs were essential for osteoinduction, their survival did not correlate with bone formation. By contrast, the degree of early osteoclastogenesis (2 weeks) seemed to define the extent of subsequent bone formation. Together, our findings suggest that the osteoclastic response could be used as a predictive marker in hMSC-CaP-based bone regeneration and strengthens the need to understand the underlying mechanisms for future biomaterial development. STATEMENT OF SIGNIFICANCE: The combination of mesenchymal stromal cells (MSCs) and calcium phosphate (CaP) materials has demonstrated its safety and efficacy for bone regeneration in clinical trials, despite our insufficient understanding of the underlying biological mechanisms. Osteoclasts were previously suggested as key mediators between the early inflammatory phase following biomaterial implantation and the subsequent bone formation. Here we compared the affinity of osteoclasts for various CaP materials with different ratios of hydroxyapatite to ß-tricalcium phosphate. We found that osteoclast formation, both in vitro and at early stages in vivo, correlates with bone formation when the materials were implanted alongside MSCs in mice. Surprisingly, MSC survival did not correlate with bone formation, suggesting that the number or phenotype of osteoclasts formed was more important.


Assuntos
Fosfatos de Cálcio , Osteogênese , Animais , Humanos , Camundongos , Camundongos Nus , Fosfatos de Cálcio/farmacologia , Materiais Biocompatíveis/farmacologia , Durapatita/farmacologia , Hidroxiapatitas/farmacologia , Cerâmica
19.
Eur Cell Mater ; 25: 97-113, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325541

RESUMO

The shape that stem cells reach at the end of adhesion process influences their differentiation. Rearrangement of cytoskeleton and modification of intracellular tension may activate mechanotransduction pathways controlling cell commitment. In the present study, the mechanical signals involved in cell adhesion were computed in in vitro stem cells of different shapes using a single cell model, the so-called Cytoskeleton Divided Medium (CDM) model. In the CDM model, the filamentous cytoskeleton and nucleoskeleton networks were represented as a mechanical system of multiple tensile and compressive interactions between the nodes of a divided medium. The results showed that intracellular tonus, focal adhesion forces as well as nuclear deformation increased with cell spreading. The cell model was also implemented to simulate the adhesion process of a cell that spreads on protein-coated substrate by emitting filopodia and creating new distant focal adhesion points. As a result, the cell model predicted cytoskeleton reorganisation and reinforcement during cell spreading. The present model quantitatively computed the evolution of certain elements of mechanotransduction and may be a powerful tool for understanding cell mechanobiology and designing biomaterials with specific surface properties to control cell adhesion and differentiation.


Assuntos
Mecanotransdução Celular , Células-Tronco Mesenquimais/fisiologia , Algoritmos , Fenômenos Biomecânicos , Adesão Celular , Forma do Núcleo Celular , Forma Celular , Células Cultivadas , Simulação por Computador , Citoesqueleto/fisiologia , Adesões Focais/fisiologia , Humanos , Modelos Biológicos , Análise de Célula Única
20.
Stem Cell Res Ther ; 14(1): 229, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649081

RESUMO

BACKGROUND: Native bone marrow (BM) mesenchymal stem/stromal cells (BM-MSCs) participate in generating and shaping the skeleton and BM throughout the lifespan. Moreover, BM-MSCs regulate hematopoiesis by contributing to the hematopoietic stem cell niche in providing critical cytokines, chemokines and extracellular matrix components. However, BM-MSCs contain a heterogeneous cell population that remains ill-defined. Although studies on the taxonomy of native BM-MSCs in mice have just started to emerge, the taxonomy of native human BM-MSCs remains unelucidated. METHODS: By using single-cell RNA sequencing (scRNA-seq), we aimed to define a proper taxonomy for native human BM non-hematopoietic subsets including endothelial cells (ECs) and mural cells (MCs) but with a focal point on MSCs. To this end, transcriptomic scRNA-seq data were generated from 5 distinct BM donors and were analyzed together with other transcriptomic data and with computational biology analyses at different levels to identify, characterize and classify distinct native cell subsets with relevant biomarkers. RESULTS: We could ascribe novel specific biomarkers to ECs, MCs and MSCs. Unlike ECs and MCs, MSCs exhibited an adipogenic transcriptomic pattern while co-expressing genes related to hematopoiesis support and multilineage commitment potential. Furthermore, by a comparative analysis of scRNA-seq of BM cells from humans and mice, we identified core genes conserved in both species. Notably, we identified MARCKS, CXCL12, PDGFRA, and LEPR together with adipogenic factors as archetypal biomarkers of native MSCs within BM. In addition, our data suggest some complex gene nodes regulating critical biological functions of native BM-MSCs together with a preferential commitment toward an adipocyte lineage. CONCLUSIONS: Overall, our taxonomy for native BM non-hematopoietic compartment provides an explicit depiction of gene expression in human ECs, MCs and MSCs at single-cell resolution. This analysis helps enhance our understanding of the phenotype and the complexity of biological functions of native human BM-MSCs.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Células da Medula Óssea , Biomarcadores , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA