Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Macromol Rapid Commun ; 41(3): e1900542, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880040

RESUMO

A compatible organic/inorganic nanocomposite film for a stretchable resistive memory device with high performance is demonstrated using poly(4-vinylpyridine)-block-poly(propyl methacrylate) (P4VP-b-PPMA) with zinc oxide (ZnO) nanoparticle. The PPMA soft segment is designed for reducing the rigidity of the active layer, while the P4VP block serves as a charge-trapping component to induce conductive filament and also a compatible moiety for inorganic nanoparticles through hydrogen bonding. The experimental results show that the P4VP-b-PPMA-based electrical memory device exhibits write-once-read-many-times memory behavior and an excellent ON/OFF current ratio of over 105 with a stable turn-on voltage (Vset ) around -2.0 V and stable memory behavior upon stretching up to 60% strain. On the other hand, P4VP-b-PPMA/ZnO nanocomposite film switches the memory characteristic to the dynamic random access memory behavior. The stretchable memory device prepared from the nanocomposite film can have a stretching durability over 40% strain and up to 1000 times cycling stretch-relaxation test. This work demonstrates a new strategy using nanocomposite films with tunable electrical characteristics and enhanced mechanical properties for stretchable electrical devices.


Assuntos
Dispositivos de Armazenamento em Computador , Eletrônica/métodos , Nanocompostos/química , Polímeros/química , Condutividade Elétrica , Eletricidade , Eletrônica/instrumentação , Metacrilatos/química , Compostos Orgânicos/química , Polímeros/análise , Piridinas/química , Óxido de Zinco/química
2.
ACS Appl Mater Interfaces ; 16(19): 25194-25209, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38684227

RESUMO

The revolutionary self-healing function for long-term and safe service processes has inspired researchers to implement them in various fields, including in the application of antimicrobial protective coatings. Despite the great advances that have been made in the field of fabricating self-healing and antimicrobial polymers, their poor transparency and the trade-off between the mechanical and self-healing properties limit the utility of the materials as transparent antimicrobial protective coatings for wearable optical and display devices. Considering the compatibility in the blending process, our group proposed a self-healing, self-cross-linkable poly{(n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]} copolymer (AP)-based protective coating combined with two types of commercial cationic antimicrobial agents (i.e., dimethyl octadecyl (3-trimethoxysilylpropyl) ammonium chloride (DTSACL) and chlorhexidine gluconate (CHG)), leading to the fabrication of a multifunctional modified compound film of (AP/b%CHG)-grafted-a%DTSACL. The first highlight of this research is that the reactivity of the hydroxyl group in the N-(hydroxymethyl)acrylamide of the copolymer side chains under thermal conditions facilitates the "grafting to" process with the trimethoxysilane groups of DTSACL to form AP-grafted-DTSACL, yielding favorable thermal stability, improvement in hydrophobicity, and enhancement of mechanical strength. Second, we highlight that the addition of CHG can generate covalent and noncovalent interactions in a complex manner between the two biguanide groups of CHG with the AP and DTSACL via a thermal-triggered cross-linking reaction. The noncovalent interactions synergistically serve as diverse dynamic hydrogen bonds, leading to complete healing upon scratches and even showing over 80% self-healing efficiency on full-cut, while covalent bonding can effectively improve elasticity and mechanical strength. The soft nature of CHG also takes part in improving the self-healing of the copolymer. Moreover, it was discovered that the addition of CHG can enhance antimicrobial effectiveness, as demonstrated by the long-term superior antibacterial activity (100%) against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and the antifouling function on a glass substrate and/or a silica wafer coated by the modified polymer.


Assuntos
Polímeros , Polímeros/química , Polímeros/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Elasticidade , Antibacterianos/química , Antibacterianos/farmacologia , Clorexidina/química , Clorexidina/farmacologia , Clorexidina/análogos & derivados
3.
ACS Appl Mater Interfaces ; 15(28): 34075-34086, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37411032

RESUMO

Membrane gas separation provides a multitude of benefits over alternative separation techniques, especially in terms of energy efficiency and environmental sustainability. While polymeric membranes have been extensively investigated for gas separations, their self-healing capabilities have often been neglected. In this work, we have developed innovative self-healing amphiphilic copolymers by strategically incorporating three functional segments: n-butyl acrylate (BA), N-(hydroxymethyl)acrylamide (NMA), and methacrylic acid (MAA). Utilizing these three functional components, we have synthesized two distinct amphiphilic copolymers, namely, APNMA (PBAx-co-PNMAy) and APMAA (PBAx-co-PMAAy). These copolymers have been meticulously designed for gas separation applications. During the creation of these amphiphilic copolymers, BA and NMA segments were selected due to their vital role in the ease of tuning mechanical and self-healing properties. The functional groups (-OH and -NH) present on the NMA segment interact with CO2 through hydrogen bonding, thereby boosting CO2/N2 separation and achieving superior selectivity. We assessed the self-healing potential of these amphiphilic copolymer membranes using two distinct strategies: conventional and vacuum-assisted self-healing. In the vacuum-assisted approach, a robust vacuum pump generates a suction force, leading to the formation of a cone-like shape in the membrane. This formation allows common fracture sites to adhere and trigger the self-healing process. As a result, APNMA maintains its high gas permeability and CO2/N2 selectivity even after the vacuum-assisted self-healing operation. The ideal CO2/N2 selectivity of the APNMA membrane aligns closely with the commercially available PEBAX-1657 membrane (17.54 vs 20.09). Notably, the gas selectivity of the APNMA membrane can be readily restored after damage, in contrast to the PEBAX-1657 membrane, which loses its selectivity upon damage.

4.
ACS Appl Mater Interfaces ; 13(50): 60413-60424, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894653

RESUMO

The alluring properties of a luminescent graphene quantum dot (GQD)-based nanocomposite are unquestionable to realize many advanced applications, such as sweat pH sensors. The well-suited hydrophilic polymers to host GQDs can face an unavoidable swelling behavior, which deteriorates the mechanical stability, whereas the hydrophobic polymers can prevent swelling but at the same time barricade the analyte pathways to GQDs. To resolve the two aforementioned obstacles, we develop a nanocomposite film containing nitrogen-doped GQDs (NGQDs) incorporated into a transparent, elastic, and self-healable polymer matrix, composed of a hydrophobic n-butyl acrylate segment and a hydrophilic N-(hydroxymethyl)acrylamide segment for wearable healthcare pH sensors on the human body. Besides serving as the fluorescence source, NGQDs are also designed as a nano-cross-linker to promote abundant chemical and physical interactions within the nanocomposite network. This synergetic effect gives rise to a 10-fold higher mechanical strength, 7-fold increment in Young's modulus, 4-fold increment in toughness, and 15-fold more sensitivity in pH detection (pH 3-10) compared to those of the pristine copolymer and NGQDs, respectively. Moreover, the mechanically enhanced nanocomposite possesses a high self-healing efficiency (94%) at room temperature even under water and demonstrates a stable sensing performance after repetitive usage for 30 days. Our work provides insights into the simple preparation of human skinlike nanocomposite elastomers usable for wearable pH sensors.

5.
Front Chem ; 8: 766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134258

RESUMO

This study developed a simple and efficient strategy to stabilize inorganic halide perovskite CsPbX3 at high relative humidity by embedding it into the matrix with elastic and self-healing features. The polymer matrix has a naturally hydrophobic characteristic of n-butyl acrylate segment (n-BA) and cross-linkable and healable moiety from N-(hydroxymethyl) acrylamide segment (NMA). It was chosen due to the provisions of both a surrounding protective layer for inorganic perovskite and elastic, as well as healing ability to the whole organic-inorganic composite. This fabricated CsPbBr3/PBA-co-PNMA composite was demonstrated to stably persist against the suffering from hydrolysis of perovskites when exposed to a high moisture environment. The PL intensity of the composite after crosslinking was found to be relatively stable after 30 days of exposure to air. Upon water immersion, the PL intensity of composite only showed a decrease of 32% after the first 6 h, then remained stable for 6 h afterward. Furthermore, this fabricated composite was not only flexible and relatively transparent but also exhibited excellent self-healing capability in ambient conditions (T = 25°C), in which the self-healing efficiency after 24 h was above 40%. The tensile strength and stretching ability of 5 wt% perovskite content in the random copolymer were observed to be 3.8 MPa and 553.5% respectively. Overall, flexible and self-healing properties combining with high luminescence characteristics are very promising materials for next-generation soft optical devices.

6.
Environ Sci Pollut Res Int ; 26(22): 22979-22989, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31183754

RESUMO

The low-cost composite film was prepared by incorporating chitosan, berry soap fruit extract (rarasaponin), and bentonite as the raw materials. The produced chitosan/rarasaponin/bentonite (CRB) composite exhibits outstanding adsorption capability toward copper metal ions (Cu(II)). A series of static adsorption experiments were carried out to determine the isotherm and kinetic properties of CRB composite in the adsorption process. The adsorption equilibrium shows a good fit with the Langmuir isotherm model; the CRB composite has maximum uptake of Cu (II) of 412.70 mg/g; the kinetic adsorption data exhibit a good fit with the pseudo-second-order model. The thermodynamic parameters, ΔH°, ΔG°, and ΔS°, obtained from the isotherm data indicate that the uptake of copper ions by CRB composite is more favored at low temperatures. This study shows that physicochemical modified adsorbent, namely CRB composite, can remove Cu (II) better than pristine adsorbent of AAB and chitosan. The CRB composite also shows potential reusability.


Assuntos
Bentonita/química , Quitosana/química , Cobre/química , Adsorção , Cobre/análise , Íons , Cinética , Termodinâmica , Purificação da Água
7.
Heliyon ; 5(5): e01622, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31111109

RESUMO

Starch is one of the digestible natural polymers found in vascular plants. This natural polymer is the primary source of polysaccharides to produce energy for humans. In this work, starch was extracted from the defatted and dephenolated Limnophila aromatica (DFPLA) by using the alkaline method. The DFPLA contains starch with a purity of 70.43 % where 55.1 % of it is the resistant starch. Physicochemical properties of the DFPLA starch such as solubility, morphology, swelling power, crystallinity, gelatinization, retrogradation, decomposition temperature, pasting profile, and surface functional groups were evaluated. The DFPLA starch possesses a medium-amylose content of 23.78 %, and the particle diameters of the starch were varied from 3 to 6 µm. The swelling power and solubility of the DFPLA starch are increasing as the temperature increased, where at 90 °C the swelling power and solubility of the starch is 13.73 g/g and 7.26%, respectively. Starch from DFPLA has a high total dietary fiber (76.28%) which is comparable to that of starch extracted from staple foods. The results indicate that starch from DFPLA possesses good physicochemical properties; this alternative starch may have potential application as a new feedstock for food industries.

8.
Environ Sci Pollut Res Int ; 26(5): 5020-5037, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30600491

RESUMO

Robust and simple composite films for the removal of methyl orange (MO) and Cr(VI) have been prepared by combining chitosan, saponin, and bentonite at a specific ratio. There are several composite films (chitosan-saponin-bentonite (CSB)) prepared; among them, the composite films CSB2:3 and CSB1:1 have the highest removal efficiency toward MO and Cr(VI) where the maximum removal is 70.4% (pH 4.80) and 92.3% (pH 5.30), respectively. It was found that different types of adsorbate have different thermodynamic properties of the adsorption process; the adsorption of MO onto CSB2:3, chitosan, and acid-activated bentonite (AAB) proceeded endothermically, while the adsorption of Cr(VI) onto CSB1:1, chitosan, and AAB proceeded exothermically. The parameters of the adsorption were modeled by using isotherm and kinetic equations. The models of Langmuir, Freundlich, Redlich-Peterson, Sips, and Toth were used for fitting the adsorption isotherm data at a temperature of 30, 45, and 60 °C; all of the isotherm models could represent the data well. The result indicates that CSB2:3 has the highest adsorption capacity toward MO with qm of 360.90 mg g-1 at 60 °C; meanwhile, CSB1:1 has the highest adsorption capacity toward Cr(VI) with qm 641.99 mg g-1 at 30 °C. The pseudo-second-order model could represent the adsorption kinetics data better than the pseudo-first-order equation. The adsorption mechanism was proposed, and the thermodynamic properties of the adsorption were also studied.


Assuntos
Compostos Azo/análise , Bentonita/química , Quitosana/química , Cromo/análise , Saponinas/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Propriedades de Superfície , Temperatura , Termodinâmica
9.
Environ Sci Pollut Res Int ; 25(30): 30680-30695, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30178408

RESUMO

This paper presents the preparation of composite material and its application for the adsorption of crystal violet and Cr(VI) from aqueous solution onto acid-activated bentonite (AAB) and rarasaponin-bentonite-activated biochar from durian shells composite (RBAB). The influence of initial pH of the solution and the temperature of adsorption on the adsorbents adsorption performance was also studied. Langmuir and Freundlich models could represent the adsorption equilibria equally well. Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° were evaluated based on the adsorption isotherms. The values of ∆G°, ∆H°, and ∆S° for crystal violet adsorption system demonstrate behavior contrary to the Cr(VI) adsorption system. Where crystal violet adsorption is preferred at high temperatures with qmax, value is 518.64 mg/L; while adsorption Cr(VI) is better at low temperature with qmax, value is 106.30 mg/L. Pseudo-first-order and pseudo-second-order kinetic models could represent the kinetic data well.


Assuntos
Bentonita/química , Bombacaceae/química , Carvão Vegetal/química , Cromo/química , Violeta Genciana/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Frutas/química , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Termodinâmica , Resíduos/análise , Purificação da Água/instrumentação
10.
Heliyon ; 3(12): e00488, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29387819

RESUMO

Bentonite - TiO2 composites were prepared by impregnation of TiO2 and bentonite, followed by microwave irradiation processes. The composites were characterized using FTIR, SEM, XRD, and nitrogen sorption methods. Anatase phase of TiO2 in all composites are observed through XRD diffraction peaks and surface morphology of the composites. The adsorption and photocatalytic capabilities of the composites were tested in liquid phase adsorption of methylene blue and Rhodamine B. The adsorption and photocatalytic degradation experiments were conducted in the presence or absence of UV light irradiation. Langmuir and Freundlich models were employed to correlate the experimental adsorption data, and it was found that Langmuir gave better performance in correlating the experimental data. Modification of Langmuir equation to accommodate photocatalytic degradation process was conducted, and the model could represent the experimental results very well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA