Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
RNA Biol ; 18(3): 404-420, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32862732

RESUMO

Long non-coding RNAs (ncRNAs) are major regulators of gene expression and cell fate. The INK4 locus encodes the tumour suppressor proteins p15INK4b, p16INK4a and p14ARF required for cell cycle arrest and whose expression increases during senescence. ANRIL is a ncRNA antisense to the p15 gene. In proliferative cells, ANRIL prevents senescence by repressing INK4 genes through the recruitment of Polycomb-group proteins. In models of replicative and RASval12 oncogene-induced senescence (OIS), the expression of ANRIL and Polycomb proteins decreases, thus allowing INK4 derepression. Here, we found in a model of RAF1 OIS that ANRIL expression rather increases, due in particular to an increased stability. This led us to search for circular ANRIL isoforms, as circular RNAs are rather stable species. We found that the expression of two circular ANRIL increases in several OIS models (RAF1, MEK1 and BRAF). In proliferative cells, they repress p15 expression, while in RAF1 OIS, they promote full induction of p15, p16 and p14ARF expression. Further analysis of one of these circular ANRIL shows that it interacts with Polycomb proteins and decreases EZH2 Polycomb protein localization and H3K27me3 at the p15 and p16 promoters, respectively. We propose that changes in the ratio between Polycomb proteins and circular ANRIL isoforms allow these isoforms to switch from repressors of p15 gene to activators of all INK4 genes in RAF1 OIS. Our data reveal that regulation of ANRIL expression depends on the senescence inducer and underline the importance of circular ANRIL in the regulation of INK4 gene expression and senescence.


Assuntos
Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Proteínas Proto-Oncogênicas c-raf/genética , RNA Circular/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Oncogenes , Isoformas de RNA , Estabilidade de RNA , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
2.
Cell Rep ; 21(9): 2433-2446, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29186682

RESUMO

Antisense RNAs are non-coding RNAs that can regulate their corresponding sense RNAs and are generally produced from specific promoters. We uncover here a family of antisense RNAs, named START RNAs, produced during cellular senescence by transcriptional read-through at convergent protein-coding genes. Importantly, START RNAs repress the expression of their corresponding sense RNAs. In proliferative cells, we found that the Pol II elongation rate is limited downstream of TTS at START loci, allowing transcription termination to occur before Pol II reaches the convergent genes, thus preventing antisense RNA production and interference with the expression of the convergent genes. START RNAs are repressed by H2A.Z histone variant, whose local occupancy decreases in senescence. Our results thus uncover a mechanism of gene expression regulation relying on read-through antisense transcript production at convergent genes, underlining the functional importance of chromatin regulation in the control of RNA pol II elongation rate at intergenic regions.


Assuntos
Cromatina/metabolismo , Transcrição Gênica/genética , Linhagem Celular , Senescência Celular/genética , Senescência Celular/fisiologia , Cromatina/genética , Biologia Computacional , Regulação da Expressão Gênica/genética , Humanos , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo
3.
Nat Commun ; 6: 5971, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601475

RESUMO

Non-coding RNAs (ncRNAs) play major roles in proper chromatin organization and function. Senescence, a strong anti-proliferative process and a major anticancer barrier, is associated with dramatic chromatin reorganization in heterochromatin foci. Here we analyze strand-specific transcriptome changes during oncogene-induced human senescence. Strikingly, while differentially expressed RNAs are mostly repressed during senescence, ncRNAs belonging to the recently described vlincRNA (very long intergenic ncRNA) class are mainly activated. We show that VAD, a novel antisense vlincRNA strongly induced during senescence, is required for the maintenance of senescence features. VAD modulates chromatin structure in cis and activates gene expression in trans at the INK4 locus, which encodes cell cycle inhibitors important for senescence-associated cell proliferation arrest. Importantly, VAD inhibits the incorporation of the repressive histone variant H2A.Z at INK4 gene promoters in senescent cells. Our data underline the importance of vlincRNAs as sensors of cellular environment changes and as mediators of the correct transcriptional response.


Assuntos
Senescência Celular/fisiologia , RNA não Traduzido/genética , Linhagem Celular , Senescência Celular/genética , Cromatina/genética , Heterocromatina/genética , Humanos
4.
Genome Biol ; 14(7): R73, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23876380

RESUMO

BACKGROUND: The function of the non-coding portion of the human genome remains one of the most important questions of our time. Its vast complexity is exemplified by the recent identification of an unusual and notable component of the transcriptome - very long intergenic non-coding RNAs, termed vlincRNAs. RESULTS: Here we identify 2,147 vlincRNAs covering 10 percent of our genome. We show they are present not only in cancerous cells, but also in primary cells and normal human tissues, and are controlled by canonical promoters. Furthermore, vlincRNA promoters frequently originate from within endogenous retroviral sequences. Strikingly, the number of vlincRNAs expressed from endogenous retroviral promoters strongly correlates with pluripotency or the degree of malignant transformation. These results suggest a previously unknown connection between the pluripotent state and cancer via retroviral repeat-driven expression of vlincRNAs. Finally, we show that vlincRNAs can be syntenically conserved in humans and mouse and their depletion using RNAi can cause apoptosis in cancerous cells. CONCLUSIONS: These intriguing observations suggest that vlincRNAs could create a framework that combines many existing short ESTs and lincRNAs into a landscape of very long transcripts functioning in the regulation of gene expression in the nucleus. Certain types of vlincRNAs participate at specific stages of normal development and, based on analysis of a limited set of cancerous and primary cell lines, they appear to be co-opted by cancer-associated transcriptional programs. This provides additional understanding of transcriptome regulation during the malignant state, and could lead to additional targets and options for its reversal.


Assuntos
Retrovirus Endógenos/genética , Neoplasias/genética , Células-Tronco Pluripotentes/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Animais , Linhagem Celular Transformada , Genes Reporter , Humanos , Luciferases/metabolismo , Camundongos , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Interferência de RNA , RNA Longo não Codificante/metabolismo , Sequências Repetidas Terminais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA