Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Physiology (Bethesda) ; 36(5): 272-291, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431415

RESUMO

The halogens chlorine (Cl2) and bromine (Br2) are highly reactive oxidizing elements with widespread industrial applications and a history of development and use as chemical weapons. When inhaled, depending on the dose and duration of exposure, they cause acute and chronic injury to both the lungs and systemic organs that may result in the development of chronic changes (such as fibrosis) and death from cardiopulmonary failure. A number of conditions, such as viral infections, coexposure to other toxic gases, and pregnancy increase susceptibility to halogens significantly. Herein we review their danger to public health, their mechanisms of action, and the development of pharmacological agents that when administered post-exposure decrease morbidity and mortality.


Assuntos
Bromo , Halogênios , Animais , Cloro/toxicidade , Humanos , Pulmão
2.
Am J Physiol Lung Cell Mol Physiol ; 318(3): L459-L471, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913654

RESUMO

We investigated the mechanisms involved in the development of airway hyperresponsiveness (AHR) following exposure of mice to halogens. Male mice (C57BL/6; 20-25 g) exposed to either bromine (Br2) or Cl2 (600 or 400 ppm, respectively, for 30 min) developed AHR 24 h after exposure. Nifedipine (5 mg/kg body wt; an L-type calcium channel blocker), administered subcutaneously after Br2 or Cl2 exposure, produced higher AHR compared with Br2 or Cl2 alone. In contrast, diltiazem (5 mg/kg body wt; a nondihydropyridine L-type calcium channel blocker) decreased AHR to control (air) values. Exposure of immortalized human airway smooth muscle cells (hASMC) to Br2 resulted in membrane potential depolarization (Vm Air: 62 ± 3 mV; 3 h post Br2:-45 ± 5 mV; means ± 1 SE; P < 0.001), increased intracellular [Ca2+]i, and increased expression of the calcium-sensing receptor (Ca-SR) protein. Treatment of hASMC with a siRNA against Ca-SR significantly inhibited the Br2 and nifedipine-induced Vm depolarization and [Ca2+]i increase. Intranasal administration of an antagonist to Ca-SR in mice postexposure to Br2 reversed the effects of Br2 and nifedipine on AHR. Incubation of hASMC with low-molecular-weight hyaluronan (LMW-HA), generated by exposing high-molecular-weight hyaluronan (HMW-HA) to Br2, caused Vm depolarization, [Ca2+]i increase, and Ca-SR expression to a similar extent as exposure to Br2 and Cl2. The addition of HMW-HA to cells or mice exposed to Br2, Cl2, or LMW-HA reversed these effects in vitro and improved AHR in vivo. We conclude that detrimental effects of halogen exposure on AHR are mediated via activation of the Ca-SR by LMW-HA.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Ácido Hialurônico/farmacologia , Músculo Liso/efeitos dos fármacos , Receptores de Detecção de Cálcio/metabolismo , Hipersensibilidade Respiratória/tratamento farmacológico , Viscossuplementos/farmacologia , Animais , Bromo/toxicidade , Células Cultivadas , Cloretos/toxicidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Músculo Liso/metabolismo , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/genética , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia
3.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L845-L858, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28775098

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.


Assuntos
Células Epiteliais Alveolares/virologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais Iônicos/metabolismo , Orthomyxoviridae/patogenicidade , Viroses/metabolismo , Animais , Humanos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia
4.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L328-L338, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473325

RESUMO

Primary cilia (PC) are solitary cellular organelles that play critical roles in development, homeostasis, and disease pathogenesis by modulating key signaling pathways such as Sonic Hedgehog and calcium flux. The antenna-like shape of PC enables them also to facilitate sensing of extracellular and mechanical stimuli into the cell, and a critical role for PC has been described for mesenchymal cells such as chondrocytes. However, nothing is known about the role of PC in airway smooth muscle cells (ASMCs) in the context of airway remodeling. We hypothesized that PC on ASMCs mediate cell contraction and are thus integral in the remodeling process. We found that PC are expressed on ASMCs in asthmatic lungs. Using pharmacological and genetic methods, we demonstrated that PC are necessary for ASMC contraction in a collagen gel three-dimensional model both in the absence of external stimulus and in response to the extracellular component hyaluronan. Mechanistically, we demonstrate that the effect of PC on ASMC contraction is, to a small extent, due to their effect on Sonic Hedgehog signaling and, to a larger extent, due to their effect on calcium influx and membrane depolarization. In conclusion, PC are necessary for the development of airway remodeling by mediating calcium flux and Sonic Hedgehog signaling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Brônquios/patologia , Cílios/patologia , Asma/metabolismo , Asma/patologia , Brônquios/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Cultivadas , Cílios/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Potenciais da Membrana/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Transdução de Sinais/fisiologia
5.
FASEB J ; 30(1): 201-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26336913

RESUMO

Synonymous mutations, such as I507-ATC→ATT, in deletion of Phe508 in cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR), the most frequent disease-associated mutant of CFTR, may affect protein biogenesis, structure, and function and contribute to an altered disease phenotype. Small-molecule drugs are being developed to correct ΔF508 CFTR. To understand correction mechanisms and the consequences of synonymous mutations, we analyzed the effect of mechanistically distinct correctors, corrector 4a (C4) and lumacaftor (VX-809), on I507-ATT and I507-ATC ΔF508 CFTR biogenesis and function. C4 stabilized I507-ATT ΔF508 CFTR band B, but without considerable biochemical and functional correction. VX-809 biochemically corrected ∼10% of both of the variants, leading to stable, forskolin+3-isobutyl-1-methylxanthine (IBMX)-activated whole-cell currents in the presence of the corrector. Omitting VX-809 during whole-cell recordings led to a spontaneous decline of the currents, suggesting posttranslational stabilization by VX-809. Treatment of cells with the C4+VX-809 combination resulted in enhanced rescue and 2-fold higher forskolin+IBMX-activated currents of both I507-ATT and I507-ATC ΔF508 CFTR, compared with VX-809 treatment alone. The lack of an effect of C4 on I507-ATC ΔF508 CFTR, but its additive effect in combination with VX-809, implies that C4 acted on VX-809-modified I507-ATC ΔF508 CFTR. Our results suggest that binding of C4 and VX-809 to ΔF508 CFTR is conformation specific and provide evidence that synonymous mutations can alter the drug sensitivity of proteins.


Assuntos
Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Códon/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Potenciais de Ação , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células HEK293 , Humanos , Mutação Puntual , Ligação Proteica , Estabilidade Proteica , Ubiquitinação
6.
FASEB J ; 29(7): 2712-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25795456

RESUMO

We sought to determine the mechanisms by which influenza infection of human epithelial cells decreases cystic fibrosis transmembrane conductance regulator (CFTR) expression and function. We infected human bronchial epithelial (NHBE) cells and murine nasal epithelial (MNE) cells with various strains of influenza A virus. Influenza infection significantly reduced CFTR short circuit currents (Isc) and protein levels at 8 hours postinfection. We then infected CFTR expressing human embryonic kidney (HEK)-293 cells (HEK-293 CFTRwt) with influenza virus encoding a green fluorescent protein (GFP) tag and performed whole-cell and cell-attached patch clamp recordings. Forskolin-stimulated, GlyH-101-sensitive CFTR conductances, and CFTR open probabilities were reduced by 80% in GFP-positive cells; Western blots also showed significant reduction in total and plasma membrane CFTR levels. Knockdown of the influenza matrix protein 2 (M2) with siRNA, or inhibition of its activity by amantadine, prevented the decrease in CFTR expression and function. Lysosome inhibition (bafilomycin-A1), but not proteasome inhibition (lactacystin), prevented the reduction in CFTR levels. Western blots of immunoprecipitated CFTR from influenza-infected cells, treated with BafA1, and probed with antibodies against lysine 63-linked (K-63) or lysine 48-linked (K-48) polyubiquitin chains supported lysosomal targeting. These results highlight CFTR damage, leading to early degradation as an important contributing factor to influenza infection-associated ion transport defects.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Vírus da Influenza A/fisiologia , Vírus da Influenza A/patogenicidade , Proteínas da Matriz Viral/fisiologia , Animais , Apoptose , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Vírus da Influenza A/genética , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/virologia , Transporte de Íons , Lisossomos/metabolismo , Camundongos , Necrose , Técnicas de Patch-Clamp , Proteólise , Transfecção , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/genética
7.
Am J Physiol Lung Cell Mol Physiol ; 308(9): L891-903, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25747964

RESUMO

Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca(2+), and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca(2+), blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca(2+) channels of airway smooth muscle cells, increasing their contractility and thus causing AHR.


Assuntos
Asma/tratamento farmacológico , Hiper-Reatividade Brônquica/tratamento farmacológico , Ácido Hialurônico/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , alfa-Globulinas/antagonistas & inibidores , alfa-Globulinas/biossíntese , alfa-Globulinas/imunologia , Animais , Hiper-Reatividade Brônquica/imunologia , Testes de Provocação Brônquica , Líquido da Lavagem Broncoalveolar/citologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio , Canais de Cálcio/metabolismo , Células Cultivadas , Cloro/toxicidade , Ativação Enzimática , Matriz Extracelular , Inflamação , Potenciais da Membrana/efeitos dos fármacos , Cloreto de Metacolina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Miócitos de Músculo Liso , Técnicas de Patch-Clamp , Espécies Reativas de Oxigênio/metabolismo , Traqueia/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
8.
Am J Respir Crit Care Med ; 190(5): 522-32, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25029038

RESUMO

RATIONALE: Alveolar liquid clearance is regulated by Na(+) uptake through the apically expressed epithelial sodium channel (ENaC) and basolaterally localized Na(+)-K(+)-ATPase in type II alveolar epithelial cells. Dysfunction of these Na(+) transporters during pulmonary inflammation can contribute to pulmonary edema. OBJECTIVES: In this study, we sought to determine the precise mechanism by which the TIP peptide, mimicking the lectin-like domain of tumor necrosis factor (TNF), stimulates Na(+) uptake in a homologous cell system in the presence or absence of the bacterial toxin pneumolysin (PLY). METHODS: We used a combined biochemical, electrophysiological, and molecular biological in vitro approach and assessed the physiological relevance of the lectin-like domain of TNF in alveolar liquid clearance in vivo by generating triple-mutant TNF knock-in mice that express a mutant TNF with deficient Na(+) uptake stimulatory activity. MEASUREMENTS AND MAIN RESULTS: TIP peptide directly activates ENaC, but not the Na(+)-K(+)-ATPase, upon binding to the carboxy-terminal domain of the α subunit of the channel. In the presence of PLY, a mediator of pneumococcal-induced pulmonary edema, this binding stabilizes the ENaC-PIP2-MARCKS complex, which is necessary for the open probability conformation of the channel and preserves ENaC-α protein expression, by means of blunting the protein kinase C-α pathway. Triple-mutant TNF knock-in mice are more prone than wild-type mice to develop edema with low-dose intratracheal PLY, correlating with reduced pulmonary ENaC-α subunit expression. CONCLUSIONS: These results demonstrate a novel TNF-mediated mechanism of direct ENaC activation and indicate a physiological role for the lectin-like domain of TNF in the resolution of alveolar edema during inflammation.


Assuntos
Agonistas do Canal de Sódio Epitelial/metabolismo , Canais Epiteliais de Sódio/metabolismo , Peptídeos Cíclicos/metabolismo , Alvéolos Pulmonares/metabolismo , Edema Pulmonar/metabolismo , Estreptolisinas , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteínas de Bactérias , Agonistas do Canal de Sódio Epitelial/química , Canais Epiteliais de Sódio/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Peptídeos Cíclicos/química , Alvéolos Pulmonares/microbiologia , Edema Pulmonar/microbiologia , Fator de Necrose Tumoral alfa/química
9.
Am J Respir Cell Mol Biol ; 50(5): 953-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24303840

RESUMO

Increased activity of lung epithelial sodium channels (ENaCs) contributes to the pathophysiology of cystic fibrosis (CF) by increasing the rate of epithelial lining fluid reabsorption. Inter-α-inhibitor (IαI), a serum protease inhibitor, may decrease ENaC activity by preventing its cleavage by serine proteases. High concentrations of IαI were detected in the bronchoalveolar lavage fluid (BALF) of children with CF and lower airway diseases. IαI decreased amiloride-sensitive (IENaC) but not cAMP-activated Cl(-) currents across confluent monolayers of rat ATII, and mouse nasal epithelial cells grew in primary culture by 45 and 25%, respectively. Changes in IENaC by IαI in ATII cells were accompanied by increased levels of uncleaved (immature) surface α-ENaC. IαI increased airway surface liquid depth overlying murine nasal epithelial cells to the same extent as amiloride, consistent with ENaC inhibition. Incubation of lung slices from C57BL/6, those lacking phenylalanine at position 508 (∆F508), or CF transmembrane conductance regulator knockout mice with IαI for 3 hours decreased the open probability of their ENaC channels by 50%. ∆F508 mice had considerably higher levels the amiloride-sensitive fractions of ENaC nasal potential difference (ENaC-NPD) than wild-type littermates and only background levels of IαI in their BALF. A single intranasal instillation of IαI decreased their ENaC-NPD 24 hours later by 25%. In conclusion, we show that IαI is present in the BALF of children with CF, is an effective inhibitor of ENaC proteolysis, and decreases ENaC activity in lung epithelial cells of ∆F508 mice.


Assuntos
alfa-Globulinas/metabolismo , Células Epiteliais/metabolismo , Agonistas do Canal de Sódio Epitelial/metabolismo , Canais Epiteliais de Sódio/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/metabolismo , Ratos , Xenopus laevis/metabolismo
10.
FASEB J ; 27(11): 4630-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23907436

RESUMO

The most common disease-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is the out-of-frame deletion of 3 nucleotides (CTT). This mutation leads to the loss of phenylalanine-508 (ΔF508) and a silent codon change (SCC) for isoleucine-507 (I507-ATC→ATT). ΔF508 CFTR is misfolded and degraded by endoplasmic reticulum-associated degradation (ERAD). We have demonstrated that the I507-ATC→ATT SCC alters ΔF508 CFTR mRNA structure and translation dynamics. By comparing the biochemical and functional properties of the I507-ATT and I507-ATC ΔF508 CFTR, we establish that the I507-ATC→ATT SCC contributes to the cotranslational misfolding, ERAD, and to the functional defects associated with ΔF508 CFTR. We demonstrate that the I507-ATC ΔF508 CFTR is less susceptible to the ER quality-control machinery during translation than the I507-ATT, although 27°C correction is necessary for sufficient cell-surface expression. Whole-cell patch-clamp recordings indicate sustained, thermally stable cAMP-activated Cl(-) transport through I507-ATC and unstable function of the I507-ATT ΔF508 CFTR. Single-channel recordings reveal improved gating properties of the I507-ATC compared to I507-ATT ΔF508 CFTR (NPo=0.45±0.037 vs. NPo=0.09±0.002; P<0.001). Our results signify the role of the I507-ATC→ATT SCC in the ΔF508 CFTR defects and support the importance of synonymous codon choices in determining the function of gene products.


Assuntos
Códon , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação de Sentido Incorreto , Potenciais de Ação , Membrana Celular/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Degradação Associada com o Retículo Endoplasmático , Células HEK293 , Humanos , Ativação do Canal Iônico , Polimorfismo de Nucleotídeo Único , Biossíntese de Proteínas , Transporte Proteico , Dobramento de RNA , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 304(9): L582-92, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23457187

RESUMO

The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl(-)) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H(+)) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o-) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H(+), did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Canais Iônicos/fisiologia , Proteínas da Matriz Viral/farmacologia , Amantadina/farmacologia , Animais , Benzoatos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Furanos/farmacologia , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Canais Iônicos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Pirazóis/farmacologia , Via Secretória/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Xenopus
12.
Matrix Biol ; 116: 67-84, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36758905

RESUMO

Herein, we tested the hypothesis that low molecular weight hyaluronan (LMW-HA) inhibits lung epithelial ions transport in-vivo, ex-vivo, and in-vitro by activating the calcium-sensing receptor (CaSR). Twenty-four hours post intranasal instillation of 50-150 µg/ml LMW-HA to C57BL/6 mice, there was a 75% inhibition of alveolar fluid clearance (AFC), a threefold increase in the epithelial lining fluid (ELF) depth, and a 20% increase in lung wet/dry (W/D) ratio. Incubation of human and mouse precision cut lung slices with 150 µg/ml LMW-HA reduced the activity and the open probability (Po) of epithelial sodium channel (ENaC) in alveolar epithelial type 2 (ATII) cells, and in mouse tracheal epithelial cells (MTEC) monolayers as early as 4 h. The Cl- current through cystic fibrosis transmembrane conductance regulator (CFTR) and the activity of Na,K-ATPase were both inhibited by more than 66% at 24 h. The inhibitory effects of LMW-HA on ion channels were reversed by 1 µM NPS-2143, or 150 µg/ml high molecular weight hyaluronan (HMW-HA). In HEK-293 cells expressing the calcium-sensitive Cl- channel TMEM16-A, CaSR was required for the activation of the Cl- current by LMW-HA. This is the first demonstration of lung ions and water transport inhibition by LMW-HA, and its mediation through the activation of CaSR.


Assuntos
Ácido Hialurônico , Receptores de Detecção de Cálcio , Camundongos , Humanos , Animais , Ácido Hialurônico/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/farmacologia , Células HEK293 , Peso Molecular , Camundongos Endogâmicos C57BL , Pulmão/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38073611

RESUMO

INTRODUCTION: Hypoxia due to sinus obstruction is a major pathogenic mechanism leading to sinusitis. The objective of the current study is to define the electrophysiologic characteristics of hypoxia in vitro and in vivo. METHODS: Cystic fibrosis bronchoepithelial cells expressing wild-type cystic fibrosis transmembrane conductance regulator (CFTR) and human sinonasal epithelial cells were exposed to 1% or atmospheric O2 for 24 h. Time-dependent production of cytoplasmic free radicals was measured. Cells were subjected to Ussing chamber and patch clamp technique where CFTR currents were recorded in whole-cell and cell-attached mode for single channel studies. Indices of mucociliary transport (MCT) were measured using micro-optical coherence tomography. In a rabbit hypoxic maxillary sinus model, tissue oxygenation, relative mRNA expression of HIF-1α, pH, sinus potential difference (SPD), and MCT were determined. RESULTS: Ussing chamber (p < 0.05), whole-cell (p < 0.001), and single channel patch-clamp (p < 0.0001) showed significant inhibition of Cl- currents in hypoxic cells. Cytoplasmic free radicals showed time-dependent elevation peaking at 4 h (p < 0.0001). Airway surface liquid (p < 0.0001), periciliary liquid (p < 0.001), and MCT (p < 0.01) were diminished. Co-incubation with the free radical scavenger glutathione negated the impact of hypoxia on single channel currents and MCT markers. In sinusitis rabbits, mucosa exhibited low tissue oxygenation (p < 0.0001), increased HIF1α mRNA (p < 0.05), reduced pH (p < 0.01), and decreased MCT (p < 0.001). SPD measurements demonstrated markedly diminished transepithelial Cl- transport (p < 0.0001). CONCLUSION: Hypoxia induces severe CFTR dysfunction via free radical production causing reduced MCT in vitro and in vivo. Improved oxygenation is critical to reducing the impact of persistent mucociliary dysfunction.

14.
Am J Respir Cell Mol Biol ; 46(3): 342-54, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21997487

RESUMO

The mechanisms by which the exposure of mice to Cl(2) decreases vectorial Na(+) transport and fluid clearance across their distal lung spaces have not been elucidated. We examined the biophysical, biochemical, and physiological changes of rodent lung epithelial Na(+) channels (ENaCs) after exposure to Cl(2), and identified the mechanisms involved. We measured amiloride-sensitive short-circuit currents (I(amil)) across isolated alveolar Type II (ATII) cell monolayers and ENaC single-channel properties by patching ATII and ATI cells in situ. α-ENaC, γ-ENaC, total and phosphorylated extracellular signal-related kinase (ERK)1/2, and advanced products of lipid peroxidation in ATII cells were measured by Western blot analysis. Concentrations of reactive intermediates were assessed by electron spin resonance (ESR). Amiloride-sensitive Na(+) channels with conductances of 4.5 and 18 pS were evident in ATI and ATII cells in situ of air-breathing mice. At 1 hour and 24 hours after exposure to Cl(2), the open probabilities of these two channels decreased. This effect was prevented by incubating lung slices with inhibitors of ERK1/2 or of proteasomes and lysosomes. The exposure of ATII cell monolayers to Cl(2) increased concentrations of reactive intermediates, leading to ERK1/2 phosphorylation and decreased I(amil) and α-ENaC concentrations at 1 hour and 24 hours after exposure. The administration of antioxidants to ATII cells before and after exposure to Cl(2) decreased concentrations of reactive intermediates and ERK1/2 activation, which mitigated the decrease in I(amil) and ENaC concentrations. The reactive intermediates formed during and after exposure to Cl(2) activated ERK1/2 in ATII cells in vitro and in vivo, leading to decreased ENaC concentrations and activity.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Cloro/administração & dosagem , Canais Epiteliais de Sódio/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Administração por Inalação , Células Epiteliais Alveolares/enzimologia , Animais , Antioxidantes/farmacologia , Western Blotting , Células Cultivadas , Impedância Elétrica , Ativação Enzimática , Canais Epiteliais de Sódio/metabolismo , Imuno-Histoquímica , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Técnicas de Patch-Clamp , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Alvéolos Pulmonares/enzimologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
15.
Am J Physiol Lung Cell Mol Physiol ; 302(11): L1141-6, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22492740

RESUMO

Cystic fibrosis (CF) is caused by the loss of the cystic fibrosis transmembrane conductance regulator (CFTR) function and results in a respiratory phenotype that is characterized by dehydrated mucus and bacterial infections that affect CF patients throughout their lives. Much of the morbidity and mortality in CF results from a failure to clear bacteria from the lungs. What causes the defect in the bacterial clearance in the CF lung has been the subject of an ongoing debate. Here we discuss the arguments for and against the role of the epithelial sodium channel, ENaC, in the development of CF lung disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Animais , Bactérias/imunologia , Bactérias/patogenicidade , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Canais Epiteliais de Sódio/genética , Humanos , Transporte de Íons , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/genética , Pneumopatias/metabolismo , Pneumopatias/patologia , Camundongos , Camundongos Transgênicos , Suínos
16.
J Biol Chem ; 285(13): 9716-9728, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20106988

RESUMO

We investigated the mechanisms by which chlorine (Cl(2)) and its reactive byproducts inhibit Na(+)-dependent alveolar fluid clearance (AFC) in vivo and the activity of amiloride-sensitive epithelial Na(+) channels (ENaC) by measuring AFC in mice exposed to Cl(2) (0-500 ppm for 30 min) and Na(+) and amiloride-sensitive currents (I(Na) and I(amil), respectively) across Xenopus oocytes expressing human alpha-, beta-, and gamma-ENaC incubated with HOCl (1-2000 microm). Both Cl(2) and HOCl-derived products decreased AFC in mice and whole cell and single channel I(Na) in a dose-dependent manner; these effects were counteracted by serine proteases. Mass spectrometry analysis of the oocyte recording medium identified organic chloramines formed by the interaction of HOCl with HEPES (used as an extracellular buffer). In addition, chloramines formed by the interaction of HOCl with taurine or glycine decreased I(Na) in a similar fashion. Preincubation of oocytes with serine proteases prevented the decrease of I(Na) by HOCl, whereas perfusion of oocytes with a synthetic 51-mer peptide corresponding to the putative furin and plasmin cleaving segment in the gamma-ENaC subunit restored the ability of HOCl to inhibit I(Na). Finally, I(Na) of oocytes expressing wild type alpha- and gamma-ENaC and a mutant form of beta ENaC (S520K), known to result in ENaC channels locked in the open position, were not altered by HOCl. We concluded that HOCl and its reactive intermediates (such as organic chloramines) inhibit ENaC by affecting channel gating, which could be relieved by proteases cleavage.


Assuntos
Cloraminas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Ácido Hipocloroso/metabolismo , Pulmão/metabolismo , Canais de Sódio/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Xenopus
17.
Am J Physiol Lung Cell Mol Physiol ; 301(4): L557-67, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21743028

RESUMO

We sought to establish whether the cystic fibrosis transmembrane conductance regulator (CFTR) regulates the activity of amiloride-sensitive sodium channels (ENaC) in alveolar epithelial cells of wild-type, heterozygous (Cftr(+/-)), knockout (Cftr(-/-)), and ΔF508-expressing mice in situ. RT-PCR studies confirmed the presence of CFTR message in freshly isolated alveolar type II (ATII) cells from wild-type mice. We patched alveolar type I (ATI) and ATII cells in freshly prepared lung slices from these mice and demonstrated the presence of 4-pS ENaC channels with the following basal open probabilities (P(o)): wild-type=0.21 ± 0.015: Cftr(+/-)=0.4 ± 0.03; ΔF508=0.55 ± 0.01; and Cftr(-/-)=and 0.81 ± 0.016 (means ± SE; n ≥ 9). Forskolin (5 µM) or trypsin (2 µM), applied in the pipette solution, increased the P(o) and number of channels in ATII cells of wild-type, Cftr(+/-), and ΔF508, but not in Cftr(-/-) mice, suggesting that the latter were maximally activated. Western blot analysis showed that lungs of all groups of mice had similar levels of α-ENaC; however, lungs of Cftr(+/-) and Cftr(-/-) mice had significantly higher levels of an α-ENaC proteolytic fragment (65 kDa) that is associated with active ENaC channels. Our results indicate that ENaC activity is inversely correlated to predicted CFTR levels and that CFTR heterozygous and homozygous mice have higher levels of proteolytically processed ENaC fragments in their lungs. This is the first demonstration of functional ENaC-CFTR interactions in alveolar epithelial cells in situ.


Assuntos
Células Epiteliais Alveolares/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Potenciais da Membrana/fisiologia , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais/fisiologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Amilorida/farmacologia , Animais , Western Blotting , Células Cultivadas , Colforsina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Expressão Gênica/efeitos dos fármacos , Heterozigoto , Homozigoto , Camundongos , Camundongos Knockout , Oócitos , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tripsina/metabolismo , Xenopus laevis
18.
Redox Biol ; 43: 101998, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971543

RESUMO

Lipopolysaccharide (LPS) serves as the interface between gram-negative bacteria (GNB) and the innate immune response in respiratory epithelial cells (REC). Herein, we describe a novel biological role of LPS that permits GNB to persist in the respiratory tract through inducing CFTR and mucociliary dysfunction. LPS reduced cystic fibrosis transmembrane conductance regulater (CFTR)-mediated short-circuit current in mammalian REC in Ussing chambers and nearly abrogated CFTR single channel activity (defined as forskolin-activated Cl- currents) in patch clamp studies, effects of which were blocked with toll-like receptor (TLR)-4 inhibitor. Unitary conductance and single-channel amplitude of CFTR were unaffected, but open probability and number of active channels were markedly decreased. LPS increased cytoplasmic and mitochondrial reactive oxygen species resulting in CFTR carbonylation. All effects of exposure were eliminated when reduced glutathione was added in the medium along with LPS. Functional microanatomy parameters, including mucociliary transport, in human sinonasal epithelial cells in vitro were also decreased, but restored with co-incubation with glutathione or TLR-4 inhibitor. In vivo measurements, following application of LPS in the nasal cavities showed significant decreases in transepithelial Cl- secretion as measured by nasal potential difference (NPD) - an effect that was nullified with glutathione and TLR-4 inhibitor. These data provide definitive evidence that LPS-generated reactive intermediates downregulate CFTR function in vitro and in vivo which results in cystic fibrosis-type disease. Findings have implications for therapeutic approaches intent on stimulating Cl- secretion and/or reducing oxidative stress to decrease the sequelae of GNB airway colonization and infection.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Depuração Mucociliar , Animais , Células Epiteliais/metabolismo , Humanos , Transporte de Íons , Lipopolissacarídeos , Probabilidade , Espécies Reativas de Oxigênio
19.
J Ginseng Res ; 45(1): 66-74, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437158

RESUMO

BACKGROUND: Abnormal chloride (Cl-) transport has a detrimental impact on mucociliary clearance in both cystic fibrosis (CF) and non-CF chronic rhinosinusitis. Ginseng is a medicinal plant noted to have anti-inflammatory and antimicrobial properties. The present study aims to assess the capability of red ginseng aqueous extract (RGAE) to promote transepithelial Cl- secretion in nasal epithelium. METHODS: Primary murine nasal septal epithelial (MNSE) [wild-type (WT) and transgenic CFTR-/-], fisher-rat-thyroid (FRT) cells expressing human WT CFTR, and TMEM16A-expressing human embryonic kidney cultures were utilized for the present experiments. Ciliary beat frequency (CBF) and airway surface liquid (ASL) depth measurements were performed using micro-optical coherence tomography (µOCT). Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers and whole-cell patch clamp analysis. RESULTS: RGAE (at 30µg/mL of ginsenosides) significantly increased Cl- transport [measured as change in short-circuit current (ΔISC = µA/cm2)] when compared with control in WT and CFTR-/- MNSE (WT vs control = 49.8±2.6 vs 0.1+/-0.2, CFTR-/- = 33.5±1.5 vs 0.2±0.3, p < 0.0001). In FRT cells, the CFTR-mediated ΔISC attributed to RGAE was small (6.8 ± 2.5 vs control, 0.03 ± 0.01, p < 0.05). In patch clamp, TMEM16A-mediated currents were markedly improved with co-administration of RGAE and uridine 5-triphosphate (8406.3 +/- 807.7 pA) over uridine 5-triphosphate (3524.1 +/- 292.4 pA) or RGAE alone (465.2 +/- 90.7 pA) (p < 0.0001). ASL and CBF were significantly greater with RGAE (6.2+/-0.3 µm vs control, 3.9+/-0.09 µm; 10.4+/-0.3 Hz vs control, 7.3 ± 0.2 Hz; p < 0.0001) in MNSE. CONCLUSION: RGAE augments ASL depth and CBF by stimulating Cl- secretion through CaCC, which suggests therapeutic potential in both CF and non-CF chronic rhinosinusitis.

20.
FASEB J ; 23(11): 3829-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19596899

RESUMO

The mechanisms by which replicating influenza viruses decrease the expression and function of amiloride-sensitive epithelial sodium channels (ENaCs) have not been elucidated. We show that expression of M2, a transmembrane influenza protein, decreases ENaC membrane levels and amiloride-sensitive currents in both Xenopus oocytes, injected with human alpha-, beta-, and gamma-ENaCs, and human airway cells (H441 and A549), which express native ENaCs. Deletion of a 10-aa region within the M2 C terminus prevented 70% of this effect. The M2 ENaC down-regulation occurred at normal pH and was prevented by MG-132, a proteasome and lysosome inhibitor. M2 had no effect on Liddle ENaCs, which have decreased affinity for Nedd4-2. H441 and A549 cells transfected with M2 showed higher levels of reactive oxygen species, as shown by the activation of redox-sensitive dyes. Pretreatment with glutathione ester, which increases intracellular reduced thiol concentrations, or protein kinase C (PKC) inhibitors prevented the deleterious effects of M2 on ENaCs. The data suggest that M2 protein increases steady-state concentrations of reactive oxygen intermediates that simulate PKC and decrease ENaCs by enhancing endocytosis and its subsequent destruction by the proteasome. These novel findings suggest a mechanism for the influenza-induced rhinorrhea and life-threatening alveolar edema in humans.


Assuntos
Bloqueadores do Canal de Sódio Epitelial , Espécies Reativas de Oxigênio/metabolismo , Proteínas da Matriz Viral/fisiologia , Amilorida/farmacologia , Animais , Células Cultivadas , Humanos , Oócitos/metabolismo , Proteína Quinase C/metabolismo , Transfecção , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA