Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 15(6): e0234243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502203

RESUMO

The presence of the chimeric EWSR1-FLI1 oncoprotein is the main and initiating event defining Ewing sarcoma (ES). The dysregulation of epigenomic and proteomic homeostasis induced by the oncoprotein contributes to a wide variety of events involved in oncogenesis and tumor progression. Attempts at studying the effects of EWSR1-FLI1 in non-tumor cells to understand the mechanisms underlying sarcomagenesis have been unsuccessful to date, as ectopic expression of EWSR1-FLI1 blocks cell cycle progression and induces apoptosis in the tested cell lines. Therefore, it is essential to find a permissive cell type for EWSR1-FLI1 expression that allows its endogenous molecular functions to be studied. Here we have demonstrated that HeLa cell lines are permissive to EWSR1-FLI1 ectopic expression, and that our model substantially recapitulates the endogenous activity of the EWSR1-FLI1 fusion protein. This model could contribute to better understanding ES sarcomagenesis by helping to understand the molecular mechanisms induced by the EWSR1-FLI1 oncoprotein.


Assuntos
Carcinogênese/genética , Expressão Ectópica do Gene , Proteínas de Fusão Oncogênica/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Sítios de Ligação , DNA/metabolismo , Células HeLa , Humanos , Proteínas de Fusão Oncogênica/metabolismo
2.
BMC Bioinformatics ; 6 Suppl 1: S16, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15960828

RESUMO

BACKGROUND: Molecular Biology accumulated substantial amounts of data concerning functions of genes and proteins. Information relating to functional descriptions is generally extracted manually from textual data and stored in biological databases to build up annotations for large collections of gene products. Those annotation databases are crucial for the interpretation of large scale analysis approaches using bioinformatics or experimental techniques. Due to the growing accumulation of functional descriptions in biomedical literature the need for text mining tools to facilitate the extraction of such annotations is urgent. In order to make text mining tools useable in real world scenarios, for instance to assist database curators during annotation of protein function, comparisons and evaluations of different approaches on full text articles are needed. RESULTS: The Critical Assessment for Information Extraction in Biology (BioCreAtIvE) contest consists of a community wide competition aiming to evaluate different strategies for text mining tools, as applied to biomedical literature. We report on task two which addressed the automatic extraction and assignment of Gene Ontology (GO) annotations of human proteins, using full text articles. The predictions of task 2 are based on triplets of protein--GO term--article passage. The annotation-relevant text passages were returned by the participants and evaluated by expert curators of the GO annotation (GOA) team at the European Institute of Bioinformatics (EBI). Each participant could submit up to three results for each sub-task comprising task 2. In total more than 15,000 individual results were provided by the participants. The curators evaluated in addition to the annotation itself, whether the protein and the GO term were correctly predicted and traceable through the submitted text fragment. CONCLUSION: Concepts provided by GO are currently the most extended set of terms used for annotating gene products, thus they were explored to assess how effectively text mining tools are able to extract those annotations automatically. Although the obtained results are promising, they are still far from reaching the required performance demanded by real world applications. Among the principal difficulties encountered to address the proposed task, were the complex nature of the GO terms and protein names (the large range of variants which are used to express proteins and especially GO terms in free text), and the lack of a standard training set. A range of very different strategies were used to tackle this task. The dataset generated in line with the BioCreative challenge is publicly available and will allow new possibilities for training information extraction methods in the domain of molecular biology.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas/classificação , Reconhecimento Automatizado de Padrão/métodos , Biologia Computacional/normas , Bases de Dados Genéticas/normas , Reconhecimento Automatizado de Padrão/normas , Publicações Periódicas como Assunto , Terminologia como Assunto
3.
Infect Agent Cancer ; 9: 12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24731550

RESUMO

BACKGROUND: Burkitt lymphoma is an aggressive B-cell lymphoma presenting in three clinical forms: endemic, sporadic and immunodeficiency-associated. More than 90% of endemic Burkitt lymphoma carry latent Epstein-Barr virus, whereas only 20% of sporadic Burkitt lymphoma are associated with Epstein-Barr infection. Although the Epstein-Barr virus is highly related with the endemic form, how and whether the virus participates in its pathogenesis remains to be fully elucidated. In particular, the virus may impair cellular gene expression by its own encoded microRNAs. METHODS: Using microRNA profiling we compared Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for both cellular and viral microRNAs. The array results were validated by qRT-PCR, and potential targets of viral microRNAs were then searched by bioinformatic predictions, and classified in functional categories, according to the Gene Ontology. Our findings were validated by in vitro functional studies and by immunohistochemistry on a larger series of cases. RESULTS: We showed that a few cellular microRNAs are differentially expressed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases, and identified a subset of viral microRNAs expressed in Epstein-Barr-positive Burkitt lymphomas. Of these, we characterized the effects of viral BART6-3p on regulation of cellular genes. In particular, we analyzed the IL-6 receptor genes (IL-6Rα and IL-6ST), PTEN and WT1 expression for their possible relevance to Burkitt lymphoma. By means of immunohistochemistry, we observed a down-regulation of the IL-6 receptor and PTEN specifically in Epstein-Barr-positive Burkitt lymphoma cases, which may result in the impairment of key cellular pathways and may contribute to malignant transformation. On the contrary, no differences were observed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for WT1 expression. CONCLUSIONS: Our preliminary results point at an active role for the Epstein-Barr virus in Burkitt lymphomagenesis and suggest new possible mechanisms used by the virus in determining dysregulation of the host cell physiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA