RESUMO
We report on the first observation of the unbound proton-rich nucleus 15Ne. Its ground state and first excited state were populated in two-neutron knockout reactions from a beam of 500 MeV/u 17Ne. The 15Ne ground state is found to be unbound by 2.522(66) MeV. The decay proceeds directly to 13O with simultaneous two-proton emission. No evidence for sequential decay via the energetically allowed 2- and 1- states in 14F is observed. The 15Ne ground state is shown to have a strong configuration with two protons in the (sd) shell around 13O with a 63(5)% (1s1/2)2 component.
RESUMO
The E1 strength distribution in 68Ni has been investigated using Coulomb excitation in inverse kinematics at the R3B-LAND setup and by measuring the invariant mass in the one- and two-neutron decay channels. The giant dipole resonance and a low-lying peak (pygmy dipole resonance) have been observed at 17.1(2) and 9.55(17) MeV, respectively. The measured dipole polarizability is compared to relativistic random phase approximation calculations yielding a neutron-skin thickness of 0.17(2) fm. A method and analysis applicable to neutron-rich nuclei has been developed, allowing for a precise determination of neutron skins in nuclei as a function of neutron excess.
RESUMO
Excited states in (38,40,42) Si nuclei have been studied via in-beam γ-ray spectroscopy with multinucleon removal reactions. Intense radioactive beams of ^{40}S and (44)S provided at the new facility of the RIKEN Radioactive Isotope Beam Factory enabled γ-γ coincidence measurements. A prominent γ line observed with an energy of 742(8) keV in (42) Si confirms the 2(+) state reported in an earlier study. Among the γ lines observed in coincidence with the 2^{+} â 0+ transition, the most probable candidate for the transition from the yrast 4(+) state was identified, leading to a 4(1)+) energy of 2173(14) keV. The energy ratio of 2.93(5) between the 2(1)+ and 4(1)(+) states indicates well-developed deformation in (42) Si at N = 28 and Z = 14. Also for 38,40)Si energy ratios with values of 2.09(5) and 2.56(5) were obtained. Together with the ratio for (42)Si, the results show a rapid deformation development of Si isotopes from N = 24 to N = 28.
RESUMO
Experiments were performed in Cave C of GSI (Gesellschaft für Schwerionenforschung) using the LAND (Large Area Neutron Detector) in combination with the deflection magnet ALADIN (A LArge DIpol magNet) in front of the LAND where charged particles and neutrons can be separated. This arrangement is used to create high-energetic neutron fields by irradiation of a thick lead target (5 cm) with deuteron beams with the energies of 500 or 800 MeV per nucleon. In break-up reactions the neutron is separated from the proton which is deflected in the magnetic field of the ALADIN. The produced neutron radiation, which has a pronounced peak at the nucleon energy, is used to measure the fluence response of the GSI neutron ball. A thermoluminescence (TL) based spherical neutron dosemeter was developed for the area monitoring for the quantity H(10) at high-energy accelerators. In the same experiment, the spectral neutron fluence Phi(E) is measured with the LAND in the energy range from 100 MeV to 1 GeV. The measured fluence responses are compared with results of FLUKA calculations and the corresponding fluence-to-dose conversion coefficients. The measured dosemeter responses are too high in comparison to the calculated ones (up to approximately 50%), the dosemeter reading gives dose values which are too high by a factor of 1.1-2.2 related to the corresponding fluence-to-dose conversion factors.