Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 141(3): 108123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219674

RESUMO

OBJECTIVES: Inherited amino-acid metabolism disorders (IAAMDs) require lifelong protein-restricted diet. We aimed to investigate: 1/ whether IAAMDs was associated with growth, pubertal, bone mineral apparent density (BMAD) or body composition impairments; 2/ associations linking height, amino-acid mixture (AAM), plasma amino-acids and IGF1 concentrations. DESIGN: Retrospective longitudinal study of 213 patients with neonatal-onset urea cycle disorders (UCD,n = 77), organic aciduria (OA,n = 89), maple syrup urine disease (MSUD,n = 34), or tyrosinaemia type 1 (n = 13). METHODS: We collected growth parameters, pubertal status, BMAD, body composition, protein-intake, and IGF1 throughout growth. RESULTS: Overall final height (n = 69) was below target height (TH): -0.9(1.4) vs. -0.1(0.9) SD, p < 0.001. Final height was ≤ TH-2SD in 12 (21%) patients. Height ≤ - 2SD was more frequent during puberty than during early-infancy and pre-puberty: 23.5% vs. 6.9%, p = 0.002; and vs. 10.7%, p < 0.001. Pubertal delay was frequent (26.7%). Height (SD) was positively associated with isoleucine concentration: ß, 0.008; 95%CI, 0.003 to 0.012; p = 0.001. In the pubertal subgroup, height (SD) was lower in patients with vs. without AAM supplementation: -1.22 (1.40) vs. -0.63 (1.46) (p = 0.02). In OA, height and median (IQR) isoleucine and valine concentrations(µmol/L) during puberty were lower in patients with vs. without AAM supplementation: -1.75 (1.30) vs. -0.33 (1.55) SD, p < 0.001; and 40 (23) vs. 60 (25) (p = 0.02) and 138 (92) vs. 191 (63) (p = 0.01), respectively. No correlation was found with IGF1. Lean-mass index was lower than fat-mass index: -2.03 (1.15) vs. -0.44 (0.89), p < 0.001. CONCLUSIONS: In IAAMDs, growth retardation worsened during puberty which was delayed in all disease subgroups. Height seems linked to the disease, AAM composition and lower isoleucine concentration, independently of the GH-IGF1 pathway. We recommend close monitoring of diet during puberty.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doença da Urina de Xarope de Bordo , Recém-Nascido , Humanos , Estudos Longitudinais , Estudos Retrospectivos , Isoleucina , Transtornos do Crescimento , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos , Estatura
2.
Hum Reprod ; 38(2): 266-276, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427016

RESUMO

STUDY QUESTION: Can a combination of metabolomic signature and machine learning (ML) models distinguish nonclassic 21-hydroxylase deficiency (NC21OHD) from polycystic ovary syndrome (PCOS) without adrenocorticotrophic hormone (ACTH) testing? SUMMARY ANSWER: A single sampling methodology may be an alternative to the dynamic ACTH test in order to exclude the diagnosis of NC21OHD in the presence of a clinical hyperandrogenic presentation at any time of the menstrual cycle. WHAT IS KNOWN ALREADY: The clinical presentation of patients with NC21OHD is similar with that for other disorders of androgen excess. Currently, cosyntropin stimulation remains the gold standard diagnosis of NC21OHD. STUDY DESIGN, SIZE, DURATION: The study was designed using a bicentric recruitment: an internal training set included 19 women with NC21OHD and 19 controls used for developing the model; a test set included 17 NC21OHD, 72 controls and 266 PCOS patients used to evaluate the performance of the diagnostic strategy thanks to an ML approach. PARTICIPANTS/MATERIALS, SETTING, METHODS: Fifteen steroid species were measured in serum by liquid chromatography-mass spectrometry (LC-MS/MS). This set of 15 steroids (defined as 'steroidome') used to map the steroid biosynthesis pathway was the input for our models. MAIN RESULTS AND THE ROLE OF CHANCE: From a single sample, modeling involving metabolic pathway mapping by profiling 15 circulating steroids allowed us to identify perfectly NC21OHD from a confounding PCOS population. The constructed model using baseline LC-MS/MS-acquired steroid fingerprinting successfully excluded all 17 NC21OHDs (sensitivity and specificity of 100%) from 266 PCOS from an external testing cohort of originally 549 women, without the use of ACTH testing. Blood sampling timing during the menstrual cycle phase did not impact the efficiency of our model. LIMITATIONS, REASONS FOR CAUTION: The main limitations were the use of a restricted and fully prospective cohort as well as an analytical issue, as not all laboratories are equipped with mass spectrometers able to routinely measure this panel of 15 steroids. Moreover, the robustness of our model needs to be established with a larger prospective study for definitive validation in clinical practice. WIDER IMPLICATIONS OF THE FINDINGS: This tool makes it possible to propose a new semiology for the management of hyperandrogenism. The model presents better diagnostic performances compared to the current reference strategy. The management of patients may be facilitated by limiting the use of ACTH tests. Finally, the modeling process allows a classification of steroid contributions to rationalize the biomarker approach and highlight some underlying pathophysiological mechanisms. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by 'Agence Française de Lutte contre le dopage' and DIM Région Ile de France. This study was supported by the French institutional PHRC 2010-AOR10032 funding source and APHP. All authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Estudos Prospectivos , Hormônio Adrenocorticotrópico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Esteroides
3.
Metabolomics ; 17(7): 67, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34228178

RESUMO

INTRODUCTION: Serum phenotyping of elite cyclists regarding cortisol, IGF1 and testosterone is a way to detect endocrine disruptions possibly explained by exercise overload, non-balanced diet or by doping. This latter disruption-driven approach is supported by fundamental physiology although without any evidence of any metabolic markers. OBJECTIVES: Serum samples were distributed through Low, High or Normal endocrine classes according to hormone concentration. A 1H NMR metabolomic study of 655 serum obtained in the context of the longitudinal medical follow-up of 253 subjects was performed to discriminate the three classes for every endocrine phenotype. METHODS: An original processing algorithm was built which combined a partial-least squares-based orthogonal correction of metabolomic signals and a shrinkage discriminant analysis (SDA) to get satisfying classifications. An extended validation procedure was used to plan in larger size cohorts a minimal size to get a global prediction rate (GPR), i.e. the product of the three class prediction rates, higher than 99.9%. RESULTS: Considering the 200 most SDA-informative variables, a sigmoidal fitting of the GPR gave estimates of a minimal sample size to 929, 2346 and 1408 for cortisol, IGF1 and testosterone, respectively. Analysis of outliers from cortisol and testosterone Normal classes outside the 97.5%-confidence limit of score prediction revealed possibly (i) an inadequate protein intake for outliers or (ii) an intake of dietary ergogenics, glycine or glutamine, which might explain the significant presence of heterogeneous metabolic profiles in a supposedly normal cyclists subgroup. CONCLUSION: In a next validation metabolomics study of a so-sized cohort, anthropological, clinical and dietary metadata should be recorded in priority at the blood collection time to confirm these functional hypotheses.


Assuntos
Hidrocortisona , Metabolômica , Dieta , Humanos , Espectroscopia de Ressonância Magnética , Testosterona
4.
J Med Genet ; 57(3): 160-168, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31586944

RESUMO

BACKGROUND: The type 1 insulin-like growth factor receptor (IGF1R) is a keystone of fetal growth regulation by mediating the effects of IGF-I and IGF-II. Recently, a cohort of patients carrying an IGF1R defect was described, from which a clinical score was established for diagnosis. We assessed this score in a large cohort of patients with identified IGF1R defects, as no external validation was available. Furthermore, we aimed to develop a functional test to allow the classification of variants of unknown significance (VUS) in vitro. METHODS: DNA was tested for either deletions or single nucleotide variant (SNV) and the phosphorylation of downstream pathways studied after stimulation with IGF-I by western blot analysis of fibroblast of nine patients. RESULTS: We detected 21 IGF1R defects in 35 patients, including 8 deletions and 10 heterozygous, 1 homozygous and 1 compound-heterozygous SNVs. The main clinical characteristics of these patients were being born small for gestational age (90.9%), short stature (88.2%) and microcephaly (74.1%). Feeding difficulties and varying degrees of developmental delay were highly prevalent (54.5%). There were no differences in phenotypes between patients with deletions and SNVs of IGF1R. Functional studies showed that the SNVs tested were associated with decreased AKT phosphorylation. CONCLUSION: We report eight new pathogenic variants of IGF1R and an original case with a homozygous SNV. We found the recently proposed clinical score to be accurate for the diagnosis of IGF1R defects with a sensitivity of 95.2%. We developed an efficient functional test to assess the pathogenicity of SNVs, which is useful, especially for VUS.


Assuntos
Anormalidades Múltiplas/genética , Desenvolvimento Fetal/genética , Retardo do Crescimento Fetal/genética , Transtornos do Crescimento/genética , Receptor IGF Tipo 1/genética , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/fisiopatologia , Adolescente , Criança , Nanismo/genética , Nanismo/fisiopatologia , Feminino , Retardo do Crescimento Fetal/epidemiologia , Retardo do Crescimento Fetal/fisiopatologia , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/fisiopatologia , Heterozigoto , Homozigoto , Humanos , Recém-Nascido Pequeno para a Idade Gestacional/crescimento & desenvolvimento , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/genética , Masculino , Microcefalia/genética , Microcefalia/fisiopatologia , Mutação de Sentido Incorreto/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Receptores de Somatomedina/genética
5.
J Med Genet ; 55(3): 205-213, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29223973

RESUMO

BACKGROUND: The 11p15 region contains two clusters of imprinted genes. Opposite genetic and epigenetic anomalies of this region result in two distinct growth disturbance syndromes: Beckwith-Wiedemann (BWS) and Silver-Russell syndromes (SRS). Cytogenetic rearrangements within this region represent less than 3% of SRS and BWS cases. Among these, 11p15 duplications were infrequently reported and interpretation of their pathogenic effects is complex. OBJECTIVES: To report cytogenetic and methylation analyses in a cohort of patients with SRS/BWS carrying 11p15 duplications and establish genotype/phenotype correlations. METHODS: From a cohort of patients with SRS/BWS with an abnormal methylation profile (using ASMM-RTQ-PCR), we used SNP-arrays to identify and map the 11p15 duplications. We report 19 new patients with SRS (n=9) and BWS (n=10) carrying de novo or familial 11p15 duplications, which completely or partially span either both telomeric and centromeric domains or only one domain. RESULTS: Large duplications involving one complete domain or both domains are associated with either SRS or BWS, depending on the parental origin of the duplication. Genotype-phenotype correlation studies of partial duplications within the telomeric domain demonstrate the prominent role of IGF2, rather than H19, in the control of growth. Furthermore, it highlights the role of CDKN1C within the centromeric domain and suggests that the expected overexpression of KCNQ1OT1 from the paternal allele (in partial paternal duplications, excluding CDKN1C) does not affect the expression of CDKN1C. CONCLUSIONS: The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Duplicação Gênica/genética , Impressão Molecular , Síndrome de Silver-Russell/genética , Adulto , Síndrome de Beckwith-Wiedemann/patologia , Centrômero/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 11/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Análise Citogenética , Feminino , Humanos , Fator de Crescimento Insulin-Like II/genética , Masculino , Mutação , Fenótipo , Síndrome de Silver-Russell/patologia , Telômero/genética
6.
Genet Med ; 20(2): 250-258, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28796236

RESUMO

PurposeFetal growth is a complex process involving maternal, placental and fetal factors. The etiology of fetal growth retardation remains unknown in many cases. The aim of this study is to identify novel human mutations and genes related to Silver-Russell syndrome (SRS), a syndromic form of fetal growth retardation, usually caused by epigenetic downregulation of the potent fetal growth factor IGF2.MethodsWhole-exome sequencing was carried out on members of an SRS familial case. The candidate gene from the familial case and two other genes were screened by targeted high-throughput sequencing in a large cohort of suspected SRS patients. Functional experiments were then used to link these genes into a regulatory pathway.ResultsWe report the first mutations of the PLAG1 gene in humans, as well as new mutations in HMGA2 and IGF2 in six sporadic and/or familial cases of SRS. We demonstrate that HMGA2 regulates IGF2 expression through PLAG1 and in a PLAG1-independent manner.ConclusionGenetic defects of the HMGA2-PLAG1-IGF2 pathway can lead to fetal and postnatal growth restriction, highlighting the role of this oncogenic pathway in the fine regulation of physiological fetal/postnatal growth. This work defines new genetic causes of SRS, important for genetic counseling.


Assuntos
Proteínas de Ligação a DNA/genética , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Predisposição Genética para Doença , Variação Genética , Proteína HMGA2/genética , Fator de Crescimento Insulin-Like II/genética , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Fácies , Feminino , Retardo do Crescimento Fetal/diagnóstico , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Genótipo , Gráficos de Crescimento , Proteína HMGA2/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Modelos Biológicos , Mutação , Linhagem , Transdução de Sinais , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/metabolismo , Sequenciamento Completo do Genoma
7.
Hum Mutat ; 38(1): 105-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27701793

RESUMO

The 11p15 region harbors the IGF2/H19 imprinted domain, implicated in fetal and postnatal growth. Silver-Russell syndrome (SRS) is characterized by fetal and postnatal growth failure, and is caused principally by hypomethylation of the 11p15 imprinting control region 1 (ICR1). However, the mechanisms leading to ICR1 hypomethylation remain unknown. Maternally inherited genetic defects affecting the ICR1 domain have been associated with ICR1 hypermethylation and Beckwith-Wiedemann syndrome (an overgrowth syndrome, the clinical and molecular mirror of SRS), and paternal deletions of IGF2 enhancers have been detected in four SRS patients. However, no paternal deletions of ICR1 have ever been associated with hypomethylation of the IGF2/H19 domain in SRS. We screened for new genetic defects within the ICR1 in a cohort of 234 SRS patients with hypomethylated IGF2/H19 domain. We report deletions close to the boundaries of ICR1 on the paternal allele in one familial and two sporadic cases of SRS with ICR1 hypomethylation. These deletions are associated with hypomethylation of the remaining CBS, and decreased IGF2 expression. These results suggest that these regions are most likely required to maintain methylation after fertilization. We estimate these anomalies to occur in about 1% of SRS cases with ICR1 hypomethylation.


Assuntos
Cromossomos Humanos Par 11 , Metilação de DNA , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Deleção de Sequência , Síndrome de Silver-Russell/genética , Pré-Escolar , Feminino , Fibroblastos , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Linhagem
8.
Hum Mol Genet ; 24(12): 3314-21, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25736213

RESUMO

Like genetic mutations, DNA methylation anomalies or epimutations can disrupt gene expression and lead to human diseases. However, unlike genetic mutations, epimutations can in theory be reverted through developmental epigenetic reprograming, which should limit their transmission across generations. Following the request for a parental project of a patient diagnosed with Silver-Russell syndrome (SRS), and the availability of both somatic and spermatozoa DNA from the proband and his father, we had the exceptional opportunity to evaluate the question of inheritance of an epimutation. We provide here for the first time evidence for efficient reversion of a constitutive epimutation in the spermatozoa of an SRS patient, which has important implication for genetic counseling.


Assuntos
Metilação de DNA , Epigênese Genética , Células Germinativas/metabolismo , Síndrome de Silver-Russell/genética , Adulto , Ilhas de CpG , Exoma , Feminino , Regulação da Expressão Gênica , Ordem dos Genes , Loci Gênicos , Impressão Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Fenótipo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Síndrome de Silver-Russell/diagnóstico
9.
Hum Mol Genet ; 23(21): 5763-73, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24916376

RESUMO

Isolated gain of methylation (GOM) at the IGF2/H19 imprinting control region 1 (ICR1) accounts for about 10% of patients with BWS. A subset of these patients have genetic defects within ICR1, but the frequency of these defects has not yet been established in a large cohort of BWS patients with isolated ICR1 GOM. Here, we carried out a genetic analysis in a large cohort of 57 BWS patients with isolated ICR1 GOM and analyzed the methylation status of the entire domain. We found a new point mutation in two unrelated families and a 21 bp deletion in another unrelated child, both of which were maternally inherited and affected the OCT4/SOX2 binding site in the A2 repeat of ICR1. Based on data from this and previous studies, we estimate that cis genetic defects account for about 20% of BWS patients with isolated ICR1 GOM. Methylation analysis at eight loci of the IGF2/H19 domain revealed that sites surrounding OCT4/SOX2 binding site mutations were fully methylated and methylation indexes declined as a function of distance from these sites. This was not the case in BWS patients without genetic defects identified. Thus, GOM does not spread uniformly across the IGF2/H19 domain, suggesting that OCT4/SOX2 protects against methylation at local sites. These findings add new insights to the mechanism of the regulation of the ICR1 domain. Our data show that mutations and deletions within ICR1 are relatively common. Systematic identification is therefore necessary to establish appropriate genetic counseling for BWS patients with isolated ICR1 GOM.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/metabolismo , Metilação de DNA , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/metabolismo , Sequência de Bases , Síndrome de Beckwith-Wiedemann/diagnóstico , Sítios de Ligação , Estudos de Casos e Controles , Cromossomos Humanos Par 11 , Feminino , Frequência do Gene , Heterozigoto , Humanos , Masculino , Mutação , Motivos de Nucleotídeos , Linhagem , Fenótipo , Deleção de Sequência
10.
Pediatr Blood Cancer ; 63(9): 1571-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27228957

RESUMO

BACKGROUND: Patients with Beckwith-Wiedemann syndrome (BWS) or isolated hemihypertrophy (HH) treated for a Wilms tumor (WT) carry an increased risk of developing metachronous lesion. There are no guidelines on precise indications for nephron sparing surgery (NSS) in unilateral WT (UWT). The objective of this retrospective study was to delineate the indications of NSS in patients with BWS/HH treated for WT and to evaluate their outcome. PROCEDURE: All cases of BWS/HH treated for a WT according to SIOP protocols from 1980 to 2013 were reviewed. Patients were divided into two groups (G): isolated UWT (G1) and bilateral lesions (G2) with two subgroups: bilateral tumors suspected of malignancy (G2a), and unilateral tumor suspected of malignancy with contralateral nephroblastomatosis (G2b). RESULTS: Forty-six patients were included (34 G1, three G2a, and nine G2b). Nine NSS and 25 total nephrectomies (TN) were performed in G1, two bilateral NSS and one NSS with contralateral TN in G2a, and eight NSS and one TN in G2b. The 3-year event-free survival was 92.3% (95% CI [77.9-97.5%]). One death occurred after a local relapse following a TN for a stage III stromal WT (G1) and another after a combined local and distant relapse following a NSS for a stage I diffuse anaplastic WT (G2b). There were two metachronous WT (4%), 3 years after a TN (G1) and 12 years after a NSS (G2b). CONCLUSIONS: NSS is recommended in bilateral WT and may be an option in selected UWT patients with BWS/HH because it was not associated with an increased risk of local relapse.


Assuntos
Síndrome de Beckwith-Wiedemann/cirurgia , Hiperplasia/cirurgia , Neoplasias Renais/cirurgia , Néfrons/cirurgia , Tumor de Wilms/cirurgia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos
11.
J Med Genet ; 52(1): 53-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25395389

RESUMO

BACKGROUND: The structural organisation of the human IGF2/ICR1/H19 11p15 domain is very complex, and the mechanisms underlying its regulation are poorly understood. The Imprinted Center Region 1 (ICR1) contains seven binding sites for the zinc-finger protein CTCF (CBS: CTCF Binding Sites); three additional differentially methylated regions (DMR) are located at the H19 promoter (H19DMR) and two in the IGF2 gene (DMR0 and DMR2), respectively. Loss of imprinting at the IGF2/ICR1/H19 domain results in two growth disorders with opposite phenotypes: Beckwith-Wiedemann syndrome and Russell Silver syndrome (RSS). Despite the IGF2/ICR1/H19 locus being widely studied, the extent of hypomethylation across the domain remains not yet addressed in patients with RSS. METHODS: We assessed a detailed investigation of the methylation status of the 11p15 ICR1 CBS1-7, IGF2DMR0 and H19DMR (H19 promoter) in a population of controls (n=50) and RSS carrying (n=104) or not (n=65) carrying a hypomethylation at the 11p15 ICR1 region. RESULTS: The methylation indexes (MI) were balanced at all regions in the control population and patients with RSS without any as yet identified molecular anomaly. Interestingly, patients with RSS with ICR1 hypomethylation showed uneven profiles of methylation among the CBSs and DMRs. Furthermore, normal MIs at CBS1 and CBS7 were identified in 9% of patients. CONCLUSIONS: The hypomethylation does not spread equally throughout the IGF2/ICR1/H19 locus, and some loci could have normal MI, which may lead to underdiagnosis of patients with RSS with ICR1 hypomethylation. The uneven pattern of methylation suggests that some CBSs may play different roles in the tridimensional chromosomal looping regulation of this locus.


Assuntos
Cromossomos Humanos Par 11/genética , Metilação de DNA/genética , Regulação da Expressão Gênica/genética , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Síndrome de Silver-Russell/genética , Sequência de Bases , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Dados de Sequência Molecular , Paris , Análise de Componente Principal , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Sulfitos
12.
Hum Mutat ; 36(9): 894-902, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077438

RESUMO

Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron-exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS.


Assuntos
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Estudos de Associação Genética , Impressão Genômica , Fenótipo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Feminino , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Alinhamento de Sequência
13.
J Med Genet ; 51(8): 502-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24996904

RESUMO

BACKGROUND: Disruption of 11p15 imprinting results in two fetal growth disorders with opposite phenotypes: the Beckwith-Wiedemann (BWS; MIM 130650) and the Silver-Russell (SRS; MIM 180860) syndromes. DNA methylation defects account for 60% of BWS and SRS cases and, in most cases, occur without any identified mutation in a cis-acting regulatory sequence or a trans-acting factor. METHODS: We investigated whether 11p15 cis-acting sequence variants account for primary DNA methylation defects in patients with SRS and BWS with loss of DNA methylation at ICR1 and ICR2, respectively. RESULTS: We identified a 4.5 kb haplotype that, upon maternal transmission, is associated with a risk of ICR2 loss of DNA methylation in patients with BWS. This novel region is located within the second intron of the KCNQ1 gene, 170 kb upstream of the ICR2 imprinting centre and encompasses two CTCF binding sites. We showed that, within the 4.5 kb region, two SNPs (rs11823023 and rs179436) affect CTCF occupancy at DNA motifs flanking the CTCF 20 bp core motif. CONCLUSIONS: This study shows that genetic variants confer a risk of DNA methylation defect with a parent-of-origin effect and highlights the crucial role of CTCF for the regulation of genomic imprinting of the CDKN1C/KCNQ1 domain.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Canal de Potássio KCNQ1/genética , Sítios de Ligação/genética , Fator de Ligação a CCCTC , Metilação de DNA/genética , Feminino , Haplótipos/genética , Humanos , Íntrons/genética , Canal de Potássio KCNQ1/metabolismo , Masculino , Mutação/genética , Proteínas Repressoras/metabolismo
14.
Nat Genet ; 37(9): 1003-7, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16086014

RESUMO

Silver-Russell syndrome (SRS, OMIM 180860) is a congenital disorder characterized by severe intrauterine and postnatal growth retardation, dysmorphic facial features and body asymmetry. SRS is genetically heterogenous with maternal uniparental disomy with respect to chromosome 7 occurring in approximately 10% of affected individuals. Given the crucial role of the 11p15 imprinted region in the control of fetal growth, we hypothesized that dysregulation of genes at 11p15 might be involved in syndromic intrauterine growth retardation. We identified an epimutation (demethylation) in the telomeric imprinting center region ICR1 of the 11p15 region in several individuals with clinically typical SRS. This epigenetic defect is associated with, and probably responsible for, relaxation of imprinting and biallelic expression of H19 and downregulation of IGF2. These findings provide new insight into the pathogenesis of SRS and strongly suggest that the 11p15 imprinted region, in addition to those of 7p11.2-p13 and 7q31-qter, is involved in SRS.


Assuntos
Cromossomos Humanos Par 11/genética , Metilação de DNA , Impressão Genômica/genética , Transtornos do Crescimento/genética , Mutação/genética , Telômero , Fator de Ligação a CCCTC , Proteínas de Ligação a DNA/genética , Retardo do Crescimento Fetal , Transtornos do Crescimento/fisiopatologia , Humanos , Fator de Crescimento Insulin-Like II , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Proteínas/genética , RNA Longo não Codificante , RNA não Traduzido/genética , Proteínas Repressoras/genética , Síndrome
15.
Rev Prat ; 74(4): 368-372, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38814025

RESUMO

MEDIUM AND LONG-TERM HEALTH OUTCOME OF CHILDREN CONCEIVED THROUGH IN VITRO FERTILIZATION. Numerous studies have been carried out in children conceived by in vitro fertilization (IVF) focusing on the occurrence of various alterations in their health. It appears that if children can sometimes be affected by health problems, without a particular type predominating, nevertheless their incidence is relatively moderate and not much greater than in naturally conceived children. The alterations observed in children are not necessarily attributable to IVF insofar as infertile couples may be more at risk of transmitting to their children factors responsible for health disturbances. The mechanisms involved in the occurrence of the observed alterations are poorly understood. If disruptions of epigenetic regulations are most often mentioned, research is still needed to clarify them.


CONSÉQUENCES DE LA FÉCONDATION IN VITRO SUR LA SANTÉ DES ENFANTS À MOYEN ET À LONG TERMES. De nombreuses études ont été menées chez les enfants conçus par fécondation in vitro (FIV), s'intéressant à la survenue de différentes altérations de leur santé. Il en ressort que si les enfants peuvent être parfois atteints de troubles de la santé, sans qu'un type particulier prédomine, leur incidence est néanmoins relativement modérée et pas beaucoup plus importante que chez les enfants conçus naturellement. Les altérations observées chez les enfants ne sont pas forcément imputables à la FIV dans la mesure où les couples infertiles peuvent être plus à risque de transmettre à leurs enfants des facteurs responsables de perturbations de santé. Les mécanismes impliqués dans la survenue des altérations observées sont mal connus. Si des perturbations de régulations épigénétiques sont le plus souvent évoquées, des recherches sont encore nécessaires pour les préciser.


Assuntos
Fertilização in vitro , Humanos , Criança , Feminino , Gravidez , Saúde da Criança
16.
Nutrients ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904077

RESUMO

Nutrition during the early postnatal period can program the growth trajectory and adult size. Nutritionally regulated hormones are strongly suspected to be involved in this physiological regulation. Linear growth during the postnatal period is regulated by the neuroendocrine somatotropic axis, whose development is first controlled by GHRH neurons of the hypothalamus. Leptin that is secreted by adipocytes in proportion to fat mass is one of the most widely studied nutritional factors, with a programming effect in the hypothalamus. However, it remains unclear whether leptin stimulates the development of GHRH neurons directly. Using a Ghrh-eGFP mouse model, we show here that leptin can directly stimulate the axonal growth of GHRH neurons in vitro in arcuate explant cultures. Moreover, GHRH neurons in arcuate explants harvested from underfed pups were insensitive to the induction of axonal growth by leptin, whereas AgRP neurons in these explants were responsive to leptin treatment. This insensitivity was associated with altered activating capacities of the three JAK2, AKT and ERK signaling pathways. These results suggest that leptin may be a direct effector of linear growth programming by nutrition, and that the GHRH neuronal subpopulation may display a specific response to leptin in cases of underfeeding.


Assuntos
Núcleo Arqueado do Hipotálamo , Axônios , Leptina , Neurônios , Animais , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Axônios/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Animais Lactentes
17.
Nat Commun ; 14(1): 7884, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036539

RESUMO

Wilms tumors are highly curable in up to 90% of cases with a combination of surgery and radio-chemotherapy, but treatment-resistant types such as diffuse anaplastic Wilms tumors pose significant therapeutic challenges. Our multi-omics profiling unveils a distinct desert-like diffuse anaplastic Wilms tumor subtype marked by immune/stromal cell depletion, TP53 alterations, and cGAS-STING pathway downregulation, accounting for one-third of all diffuse anaplastic cases. This subtype, also characterized by reduced CD8 and CD3 infiltration and active oncogenic pathways involving histone deacetylase and DNA repair, correlates with poor clinical outcomes. These oncogenic pathways are found to be conserved in anaplastic Wilms tumor cell models. We identify histone deacetylase and/or WEE1 inhibitors as potential therapeutic vulnerabilities in these tumors, which might also restore tumor immunogenicity and potentially enhance the effects of immunotherapy. These insights offer a foundation for predicting outcomes and personalizing treatment strategies for aggressive pediatric Wilms tumors, tailored to individual immunological landscapes.


Assuntos
Neoplasias Renais , Tumor de Wilms , Criança , Humanos , Neoplasias Renais/genética , Neoplasias Renais/terapia , Neoplasias Renais/metabolismo , Tumor de Wilms/genética , Tumor de Wilms/terapia , Histona Desacetilases
18.
Hum Mol Genet ; 19(5): 803-14, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20007505

RESUMO

The imprinted expression of the IGF2 and H19 genes is controlled by the imprinting control region 1 (ICR1) located at chromosome 11p15.5. This methylation-sensitive chromatin insulator works by binding the zinc-finger protein CTCF in a parent-specific manner. DNA methylation defects involving the ICR1 H19/IGF2 domain result in two growth disorders with opposite phenotypes: an overgrowth disorder, the Beckwith-Wiedemann syndrome (maternal ICR1 gain of methylation in 10% of BWS cases) and a growth retardation disorder, the Silver-Russell syndrome (paternal ICR1 loss of methylation in 60% of SRS cases). Although a few deletions removing part of ICR1 have been described in some familial BWS cases, little information is available regarding the mechanism of ICR1 DNA methylation defects. We investigated the CTCF gene and the ICR1 domain in 21 BWS patients with ICR1 gain of methylation and 16 SRS patients with ICR1 loss of methylation. We identified four constitutional ICR1 genetic defects in BWS patients, including a familial case. Three of those defects are newly identified imprinting defects consisting of small deletions and a single mutation, which do not involve one of the CTCF binding sites. Moreover, two of those defects affect OCT-binding sequences which are suggested to maintain the unmethylated state of the maternal allele. A single-nucleotide variation was identified in a SRS patient. Our data extends the spectrum of constitutive genetic ICR1 abnormalities and suggests that extensive and accurate analysis of ICR1 is required for appropriate genetic counseling in BWS patients with ICR1 gain of methylation.


Assuntos
Cromossomos Humanos Par 11/genética , Retardo do Crescimento Fetal/genética , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Mutação , Fatores de Transcrição de Octâmero/metabolismo , RNA não Traduzido/genética , Sequência de Bases , Síndrome de Beckwith-Wiedemann/genética , Estudos de Coortes , Metilação de DNA , Feminino , Retardo do Crescimento Fetal/metabolismo , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , RNA Longo não Codificante , RNA não Traduzido/metabolismo
19.
Bull Acad Natl Med ; 196(1): 127-35; discussion 135-7, 2012 Jan.
Artigo em Francês | MEDLINE | ID: mdl-23259340

RESUMO

Growth hormone (GH) affects protein (anabolism), lipid (lipolysis) and carbohydrate (hyperglycemia) metabolism and stimulates hepatic synthesis of insulin-like growth factor 1 (IGF1). IGF1 is believed to act as a postnatal growth factor. In addition to its effects on growth, IGF1 affects cell proliferation, differentiation and survival, and has anabolic effects on proteins, and also lipogenic and glucose-lowering effects. The increasing availability of biosynthetic pituitary GH has made it feasible to treat GH-deficient children and adults, and patients of short stature due to a variety of other causes (Turner's syndrome, anomalies of SHOX, intrauterine growth retardation (IUGR), chronic renal failure, Prader-Willi syndrome, or idiopathic short stature). The therapeutic dose has been increased in some situations in which the response is inadequate, particularly in patients with certain conditions such as IUGR. However, it has been reported that cancers and cardiovascular diseases are associated with high plasma concentrations of GH and IGF1, particularly in patients with acromegaly but also in large epidemiological studies of apparently healthy populations. These findings raise questions as to the safety of GH treatment. Some long-term follow-up studies have shown an increase in the risk of some kinds of cancer or cerebrovascular disease, but these findings have not been replicated by others. The results of these studies remain debatable, due to their small sample sizes, methodological weaknesses, nonexhaustive data collection and problems involved in comparing these patients with an appropriate control group. Finally, GH and IGF1 deficiencies are themselves associated with an increased risk of cardiovascular diseases, as is small stature/low weight at birth (due to IUGR). Recent studies have demonstrated a higher risk of cardiovascular disease in patients with both low and high plasma concentrations of GH and IGF1, these risks disappearing at average values. These findings suggest that the GH dose should be adjusted during treatment to ensure that plasma IGF1 concentrations remain within the physiological range.


Assuntos
Doenças Cardiovasculares/sangue , Hormônio do Crescimento Humano/administração & dosagem , Hormônio do Crescimento Humano/sangue , Neoplasias/sangue , Hormônio do Crescimento Humano/deficiência , Humanos , Fator de Crescimento Insulin-Like I/análise
20.
Front Endocrinol (Lausanne) ; 13: 836731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295988

RESUMO

Detecting SGA (small for gestational age) during pregnancy improves the fetal and neonatal prognosis. To date, there is no valid antenatal biomarker of SGA used in clinical practice. Maternal circulating DLK1 (delta-like non-canonical notch ligand 1) levels have been shown to be significantly lower in pregnant women at 36 weeks of gestation (WG) who delivered a SGA newborn than in controls. Data in the literature are contradictory on the association between maternal circulating DLK1 levels and placental vascular dysfunction. The objective was to determine if maternal DLK1 levels in the second trimester of pregnancy are predictive of SGA, and to assess whether the measurement of DLK1 levels in maternal blood could be a means to distinguish SGA with placental vascular dysfunction from that due to other causes. We conducted a nested cased-control study within the EDEN mother-child cohort. 193 SGA (birth weight < 10th percentile) and 370 mother-child control (birth weight between the 25th and 75th percentile) matched pairs were identified in the EDEN cohort. Maternal circulating DLK1 levels at 26 WG were significantly lower for children born SGA than for controls (27.7 ± 8.7 ng/mL vs 30.4 ± 10.6 ng/mL, p = 0.001). Maternal blood DLK1 levels in the first quartile (DLK1 < 22.85 ng/mL) were associated with an odds ratio for SGA of 1.98 [1.15 - 3.37]. DLK1 was less predictive of SGA than ultrasound, with an area under the curve of 0.578. Maternal circulating DLK1 levels were not significantly different in cases of SGA with signs of placental vascular dysfunction (n = 63, 27.1 ± 9.2 ng/mL) than in those without placental dysfunction (n = 129, 28.0 ± 8.5 ng/mL, p = 0.53). The level of circulating DLK1 is reduced in the second trimester of pregnancy in cases of SGA at birth, independently of signs of placental vascular dysfunction. However, DLK1 alone cannot predict the risk of SGA.


Assuntos
Placenta , Ultrassonografia Pré-Natal , Peso ao Nascer , Proteínas de Ligação ao Cálcio , Feminino , Retardo do Crescimento Fetal , Idade Gestacional , Humanos , Recém-Nascido , Proteínas de Membrana , Gravidez , Terceiro Trimestre da Gravidez , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA