Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 140(24): 244201, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24985631

RESUMO

Ultrafast acoustics measurements on liquid mercury have been performed at high pressure and temperature in a diamond anvil cell using picosecond acoustic interferometry. We extract the density of mercury from adiabatic sound velocities using a numerical iterative procedure. We also report the pressure and temperature dependence of the thermal expansion, isothermal and adiabatic compressibility, bulk modulus, and pressure derivative of the latter up to 7 GPa and 520 K. We finally show that the sound velocity follows a scaling law as a function of density in the overall measured metallic state.

2.
J Chem Phys ; 138(4): 044505, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23387603

RESUMO

The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.


Assuntos
Dióxido de Carbono/química , Hélio/química , Neônio/química , Pressão , Temperatura
3.
Nat Commun ; 8(1): 1065, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29051485

RESUMO

Water and ammonia are considered major components of the interiors of the giant icy planets and their satellites, which has motivated their exploration under high P-T conditions. Exotic forms of these pure ices have been revealed at extreme (~megabar) pressures, notably symmetric, ionic, and superionic phases. Here we report on an extensive experimental and computational study of the high-pressure properties of the ammonia monohydrate compound forming from an equimolar mixture of water and ammonia. Our experiments demonstrate that relatively mild pressure conditions (7.4 GPa at 300 K) are sufficient to transform ammonia monohydrate from a prototypical hydrogen-bonded crystal into a form where the standard molecular forms of water and ammonia coexist with their ionic counterparts, hydroxide (OH-) and ammonium [Formula: see text] ions. Using ab initio atomistic simulations, we explain this surprising coexistence of neutral/charged species as resulting from a topological frustration between local homonuclear and long-ranged heteronuclear ionisation mechanisms.

4.
J Phys Condens Matter ; 27(27): 275103, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26061830

RESUMO

Due to discrepancies in the literature data the thermodynamic properties of liquid gallium are still in debate. Accurate measurements of adiabatic sound velocities as a function of pressure and temperature have been obtained by the combination of laser picosecond acoustics and surface imaging on sample loaded in diamond anvil cell. From these results the thermodynamic parameters of gallium have been extracted by a numerical procedure up to 10 GPa and 570 K. It is demonstrated that a Murnaghan equation of state accounts well for the whole data set since the isothermal bulk modulus BT has been shown to vary linearly with pressure in the whole temperature range. No evidence for a previously reported liquid-liquid transition has been found in the whole pressure and temperature range explored.

5.
Ultrasonics ; 56: 129-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24852260

RESUMO

Based on the original combination of picosecond acoustics and diamond anvils cell, recent improvements to accurately measure hypersonic sound velocities of liquids and solids under extreme conditions are described. To illustrate the capability of this technique, results are given on the pressure and temperature dependence of acoustic properties for three prototypical cases: polycrystal (iron), single-crystal (silicon) and liquid (mercury) samples. It is shown that such technique also enables the determination of the density as a function of pressure for liquids, of the complete set of elastic constants for single crystals, and of the melting curve for any kind of material. High pressure ultrafast acoustic spectroscopy technique clearly opens opportunities to measure thermodynamical properties under previously unattainable extreme conditions. Beyond physics, this state-of-the-art experiment would thus be useful in many other fields such as nonlinear acoustics, oceanography, petrology, in of view. A brief description of new developments and future directions of works conclude the article.

6.
Rev Sci Instrum ; 80(7): 073902, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19655960

RESUMO

Recent improvements to measure ultrasonic sound velocities of liquids under extreme conditions are described. Principle and feasibility of picosecond acoustics in liquids embedded in a diamond anvils cell are given. To illustrate the capability of these advances in the sound velocity measurement technique, original high pressure and high temperature results on the sound velocity of liquid mercury up to 5 GPa and 575 K are given. This high pressure technique will certainly be useful in several fundamental and applied problems in physics and many other fields such as geophysics, nonlinear acoustics, underwater sound, petrology or physical acoustics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA