Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(2): 173-182, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559377

RESUMO

N6-methyladenosine (m6A) is the most common mRNA modification. Recent studies have revealed that depletion of m6A machinery leads to alterations in the propagation of diverse viruses. These effects were proposed to be mediated through dysregulated methylation of viral RNA. Here we show that following viral infection or stimulation of cells with an inactivated virus, deletion of the m6A 'writer' METTL3 or 'reader' YTHDF2 led to an increase in the induction of interferon-stimulated genes. Consequently, propagation of different viruses was suppressed in an interferon-signaling-dependent manner. Significantly, the mRNA of IFNB, the gene encoding the main cytokine that drives the type I interferon response, was m6A modified and was stabilized following repression of METTL3 or YTHDF2. Furthermore, we show that m6A-mediated regulation of interferon genes was conserved in mice. Together, our findings uncover the role m6A serves as a negative regulator of interferon response by dictating the fast turnover of interferon mRNAs and consequently facilitating viral propagation.


Assuntos
Adenosina/análogos & derivados , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Interferon Tipo I/genética , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Citomegalovirus/imunologia , Modelos Animais de Doenças , Feminino , Fibroblastos , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Interferon Tipo I/imunologia , Masculino , Metilação , Metiltransferases/genética , Metiltransferases/imunologia , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Muromegalovirus/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo
2.
Nat Immunol ; 20(2): 243, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30635652

RESUMO

In the version of this article initially published, the penultimate sentence of the abstract included a typographical error ('cxgenes'). The correct word is 'genes'. The error has been corrected in the HTML and PDF version of the article.

3.
EMBO J ; 42(5): e112351, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762436

RESUMO

Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Humanos , Camundongos , Ratos , Microscopia Crioeletrônica , Infecções por Citomegalovirus/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferons/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Receptores de Interleucina-17/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35131898

RESUMO

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Interferon-alfa/farmacologia , SARS-CoV-2/efeitos dos fármacos , Transcriptoma , Replicação Viral/efeitos dos fármacos , Animais , COVID-19/imunologia , COVID-19/virologia , Chlorocebus aethiops , Clonagem Molecular , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Interferon-alfa/genética , Interferon-alfa/imunologia , Camundongos , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/farmacologia , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Transdução de Sinais , Células Vero
5.
BMC Genomics ; 25(1): 647, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943066

RESUMO

BACKGROUND: At a global scale, the SARS-CoV-2 virus did not remain in its initial genotype for a long period of time, with the first global reports of variants of concern (VOCs) in late 2020. Subsequently, genome sequencing has become an indispensable tool for characterizing the ongoing pandemic, particularly for typing SARS-CoV-2 samples obtained from patients or environmental surveillance. For such SARS-CoV-2 typing, various in vitro and in silico workflows exist, yet to date, no systematic cross-platform validation has been reported. RESULTS: In this work, we present the first comprehensive cross-platform evaluation and validation of in silico SARS-CoV-2 typing workflows. The evaluation relies on a dataset of 54 patient-derived samples sequenced with several different in vitro approaches on all relevant state-of-the-art sequencing platforms. Moreover, we present UnCoVar, a robust, production-grade reproducible SARS-CoV-2 typing workflow that outperforms all other tested approaches in terms of precision and recall. CONCLUSIONS: In many ways, the SARS-CoV-2 pandemic has accelerated the development of techniques and analytical approaches. We believe that this can serve as a blueprint for dealing with future pandemics. Accordingly, UnCoVar is easily generalizable towards other viral pathogens and future pandemics. The fully automated workflow assembles virus genomes from patient samples, identifies existing lineages, and provides high-resolution insights into individual mutations. UnCoVar includes extensive quality control and automatically generates interactive visual reports. UnCoVar is implemented as a Snakemake workflow. The open-source code is available under a BSD 2-clause license at github.com/IKIM-Essen/uncovar.


Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , Fluxo de Trabalho , SARS-CoV-2/genética , Humanos , COVID-19/virologia , COVID-19/epidemiologia , Software , Reprodutibilidade dos Testes
6.
Eur J Immunol ; 53(2): e2249940, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250419

RESUMO

Primary and recurrent cytomegalovirus (CMV) infections frequently cause CMV colitis in immunocompromised as well as inflammatory bowel disease (IBD) patients. Additionally, colitis occasionally occurs upon primary CMV infection in patients who are apparently immunocompetent. In both cases, the underlying pathophysiologic mechanisms are largely elusive - in part due to the lack of adequate access to specimens. We employed the mouse cytomegalovirus (MCMV) model to assess the association between CMV and colitis. During acute primary MCMV infection of immunocompetent mice, the gut microbial composition was affected as manifested by an altered ratio of the Firmicutes to Bacteroidetes phyla. Interestingly, these microbial changes coincided with high-titer MCMV replication in the colon, crypt hyperplasia, increased colonic pro-inflammatory cytokine levels, and a transient increase in the expression of the antimicrobial protein Regenerating islet-derived protein 3 gamma (Reg3γ). Further analyses revealed that murine and human intestinal epithelial cell lines, as well as primary intestinal crypt cells and organoids represent direct targets of CMV infection causing increased cell death. Accordingly, in vivo MCMV infection disrupted the intestinal epithelial barrier and increased apoptosis of intestinal epithelial cells. In summary, our data show that CMV transiently induces colitis in immunocompetent hosts by altering the intestinal homeostasis.


Assuntos
Colite , Infecções por Citomegalovirus , Microbioma Gastrointestinal , Muromegalovirus , Humanos , Animais , Camundongos , Citomegalovirus , Células Epiteliais/metabolismo
7.
PLoS Pathog ; 17(5): e1008807, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33939764

RESUMO

Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells without prior sensitization. One pivotal activating NK receptor is NKG2D, which binds a family of eight ligands, including the major histocompatibility complex (MHC) class I-related chain A (MICA). Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus causing morbidity and mortality in immunosuppressed patients and congenitally infected infants. HCMV encodes multiple antagonists of NK cell activation, including many mechanisms targeting MICA. However, only one of these mechanisms, the HCMV protein US9, counters the most prevalent MICA allele, MICA*008. Here, we discover that a hitherto uncharacterized HCMV protein, UL147A, specifically downregulates MICA*008. UL147A primarily induces MICA*008 maturation arrest, and additionally targets it to proteasomal degradation, acting additively with US9 during HCMV infection. Thus, UL147A hinders NKG2D-mediated elimination of HCMV-infected cells by NK cells. Mechanistic analyses disclose that the non-canonical GPI anchoring pathway of immature MICA*008 constitutes the determinant of UL147A specificity for this MICA allele. These findings advance our understanding of the complex and rapidly evolving HCMV immune evasion mechanisms, which may facilitate the development of antiviral drugs and vaccines.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Evasão da Resposta Imune/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Proteínas Virais/metabolismo , Alelos , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Proteínas Virais/genética
8.
BMC Biol ; 20(1): 264, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447206

RESUMO

BACKGROUND: The SARS-CoV-2/COVID-19 pandemic has inflicted medical and socioeconomic havoc, and despite the current availability of vaccines and broad implementation of vaccination programs, more easily accessible and cost-effective acute treatment options preventing morbidity and mortality are urgently needed. Herbal teas have historically and recurrently been applied as self-medication for prophylaxis, therapy, and symptom alleviation in diverse diseases, including those caused by respiratory viruses, and have provided sources of natural products as basis for the development of therapeutic agents. To identify affordable, ubiquitously available, and effective treatments, we tested herbs consumed worldwide as herbal teas regarding their antiviral activity against SARS-CoV-2. RESULTS: Aqueous infusions prepared by boiling leaves of the Lamiaceae perilla and sage elicit potent and sustained antiviral activity against SARS-CoV-2 when applied after infection as well as prior to infection of cells. The herbal infusions exerted in vitro antiviral effects comparable to interferon-ß and remdesivir but outperformed convalescent sera and interferon-α2 upon short-term treatment early after infection. Based on protein fractionation analyses, we identified caffeic acid, perilla aldehyde, and perillyl alcohol as antiviral compounds. Global mass spectrometry (MS) analyses performed comparatively in two different cell culture infection models revealed changes of the proteome upon treatment with herbal infusions and provided insights into the mode of action. As inferred by the MS data, induction of heme oxygenase 1 (HMOX-1) was confirmed as effector mechanism by the antiviral activity of the HMOX-1-inducing compounds sulforaphane and fraxetin. CONCLUSIONS: In conclusion, herbal teas based on perilla and sage exhibit antiviral activity against SARS-CoV-2 including variants of concern such as Alpha, Beta, Delta, and Omicron, and we identified HMOX-1 as potential therapeutic target. Given that perilla and sage have been suggested as treatment options for various diseases, our dataset may constitute a valuable resource also for future research beyond virology.


Assuntos
Tratamento Farmacológico da COVID-19 , Chás de Ervas , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Pandemias , Soroterapia para COVID-19
9.
Eur J Immunol ; 51(2): 393-407, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33029793

RESUMO

Cytomegalovirus (CMV)-based vaccines show promising effects against chronic infections in nonhuman primates. Therefore, we examined the potential of hepatitis B virus (HBV) vaccines based on mouse CMV (MCMV) vectors expressing the small HBsAg. Immunological consequences of vaccine virus attenuation were addressed by either replacing the dispensable gene m157 ("MCMV-HBsȍ) or the gene M27 ("ΔM27-HBs"), the latter encodes a potent IFN antagonist targeting the transcription factor STAT2. M27 was chosen, since human CMV encodes an analogous gene product, which also induced proteasomal STAT2 degradation by exploiting Cullin RING ubiquitin ligases. Vaccinated mice were challenged with HBV through hydrodynamic injection. MCMV-HBs and ΔM27-HBs vaccination achieved accelerated HBV clearance in serum and liver as well as robust HBV-specific CD8+ T-cell responses. When we explored the therapeutic potential of MCMV-based vaccines, especially the combination of ΔM27-HBs prime and DNA boost vaccination resulted in increased intrahepatic HBs-specific CD8+ T-cell responses and HBV clearance in persistently infected mice. Our results demonstrated that vaccines based on a replication competent MCMV attenuated through the deletion of an IFN antagonist targeting STAT2 elicit robust anti-HBV immune responses and mediate HBV clearance in mice in prophylactic and therapeutic immunization regimes.


Assuntos
Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Muromegalovirus/imunologia , Animais , Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Feminino , Hepatite B Crônica/virologia , Imunização/métodos , Interferons/imunologia , Fígado/imunologia , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT2/imunologia , Vacinação/métodos , Replicação Viral/imunologia
10.
J Med Virol ; 94(3): 951-957, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34633099

RESUMO

During the first wave of the pandemic, we compared the occurrence of subjectively experienced COVID-19-like symptoms and true severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion rates among medical personnel in general practices. This cross-sectional study determined the SARS-CoV-2-specific immunoglobulin G (IgG) antibody status of medical staff from 100 outpatient practices in Germany. Study cohort characteristics and COVID-19-like symptoms were obtained by questionnaires. The initial screening for SARS-CoV-2-recognizing antibodies was performed using a commercial chemiluminescence microparticle immunoassay. Positive results were controlled with another approved test. Samples with discrepant results were subjected to a third IgG-binding assay and a neutralization test. A total of 861 participants were included, 1.7% (n = 15) of whom tested positive for SARS-CoV-specific IgG in the initial screening test. In 46.6% (n = 7) of positive cases, test results were confirmed by an independent test. In the eight samples with discrepant results, neither spike-specific antibodies nor in vitro neutralizing capacity were detectable, resulting in a genuine seroprevalence rate of 0.8%. 794 participants completed the questionnaire. Intriguingly, a total of 53.7% (n = 426) of them stated episodes of COVID-19-like symptoms. Except for smell and taste dysfunction, there were no significant differences between the groups with and without laboratory-confirmed SARS-CoV-2 seroconversion. Our results demonstrated that only 0.8% of participants acquired SARS-CoV-2 even though 53.7% of participants reportedly experienced COVID-19-like symptoms. Thus, even among medical staff, self-diagnosis based on subjectively experienced symptoms does not have a relevant predictive value.


Assuntos
COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos Transversais , Pessoal de Saúde , Humanos , Imunoglobulina G , SARS-CoV-2 , Soroconversão , Estudos Soroepidemiológicos
11.
PLoS Pathog ; 15(9): e1008040, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527904

RESUMO

To escape CD8+ T-cell immunity, human cytomegalovirus (HCMV) US11 redirects MHC-I for rapid ER-associated proteolytic degradation (ERAD). In humans, classical MHC-I molecules are encoded by the highly polymorphic HLA-A, -B and -C gene loci. While HLA-C resists US11 degradation, the specificity for HLA-A and HLA-B products has not been systematically studied. In this study we analyzed the MHC-I peptide ligands in HCMV-infected cells. A US11-dependent loss of HLA-A ligands was observed, but not of HLA-B. We revealed a general ability of HLA-B to assemble with ß2m and exit from the ER in the presence of US11. Surprisingly, a low-complexity region between the signal peptide sequence and the Ig-like domain of US11, was necessary to form a stable interaction with assembled MHC-I and, moreover, this region was also responsible for changing the pool of HLA-B ligands. Our data suggest a two-pronged strategy by US11 to escape CD8+ T-cell immunity, firstly, by degrading HLA-A molecules, and secondly, by manipulating the HLA-B ligandome.


Assuntos
Citomegalovirus/imunologia , Citomegalovirus/metabolismo , Antígenos HLA-B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Apresentação de Antígeno , Linhagem Celular , Citomegalovirus/genética , Degradação Associada com o Retículo Endoplasmático/imunologia , Antígenos HLA-A/metabolismo , Antígenos HLA-B/química , Células HeLa , Humanos , Evasão da Resposta Imune , Ligantes , Modelos Imunológicos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Virais/química , Proteínas Virais/genética
12.
PLoS Pathog ; 15(9): e1008043, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31568492

RESUMO

Immunization vectors based on cytomegalovirus (CMV) have attracted a lot of interest in recent years because of their high efficacy in the simian immunodeficiency virus (SIV) macaque model, which has been attributed to their ability to induce strong, unusually broad, and unconventionally restricted CD8+ T cell responses. To evaluate the ability of CMV-based vectors to mediate protection by other immune mechanisms, we evaluated a mouse CMV (MCMV)-based vector encoding Friend virus (FV) envelope (Env), which lacks any known CD8+ T cell epitopes, for its protective efficacy in the FV mouse model. When we immunized highly FV-susceptible mice with the Env-encoding MCMV vector (MCMV.env), we could detect high frequencies of Env-specific CD4+ T cells after a single immunization. While the control of an early FV challenge infection was highly variable, an FV infection applied later after immunization was tightly controlled by almost all immunized mice. Protection of mice correlated with their ability to mount a robust anamnestic neutralizing antibody response upon FV infection, but Env-specific CD4+ T cells also produced appreciable levels of interferon γ. Depletion and transfer experiments underlined the important role of antibodies for control of FV infection but also showed that while no Env-specific CD8+ T cells were induced by the MCMV.env vaccine, the presence of CD8+ T cells at the time of FV challenge was required. The immunity induced by MCMV.env immunization was long-lasting, but was restricted to MCMV naïve animals. Taken together, our results demonstrate a novel mode of action of a CMV-based vaccine for anti-retrovirus immunization that confers strong protection from retrovirus challenge, which is conferred by CD4+ T cells and antibodies.


Assuntos
Vírus da Leucemia Murina de Friend/imunologia , Muromegalovirus/imunologia , Vacinas Virais/imunologia , Transferência Adotiva , Animais , Anticorpos Antivirais/biossíntese , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Feminino , Vírus da Leucemia Murina de Friend/genética , Vírus da Leucemia Murina de Friend/patogenicidade , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Vetores Genéticos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Muromegalovirus/genética , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/prevenção & controle , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/genética
13.
J Med Virol ; 93(5): 2848-2856, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33289117

RESUMO

During the coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), reliable diagnostics are absolutely indispensable. Molecular SARS-CoV-2 diagnostics based on nucleic acids (NA) derived from oro- or nasopharyngeal swabs constitute the current gold standard. Given the importance of test results, it is crucial to assess the quality of the underlying swab samples and NA extraction procedures. We determined NA concentrations in clinical samples used for SARS-CoV-2 testing applying an NA-specific dye. In comparison to cut-offs defined by SARS-CoV-2-positive samples, internal positive controls, and references from a federal laboratory, 90.85% (923 of 1016) of swabs contained NA concentrations enabling SARS-CoV-2 recognition. Swabs collected by local health authorities and the central emergency department either had significantly higher NA concentrations or were less likely to exhibit insufficient quality, arguing in favor of sampling centers with routined personnel. Interestingly, samples taken from females had significantly higher NA concentrations than those from males. Among eight longitudinal patient sample sets with intermitting negative quantitative reverse transcription polymerase chain reaction results, two showed reduced NA concentrations in negative specimens. The herein described fluorescence-based NA quantification approach is immediately applicable to evaluate swab qualities, optimize sampling strategies, identify patient-specific differences, and explain some peculiar test results including intermittent negative samples with low NA concentrations.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teste para COVID-19/métodos , Criança , Pré-Escolar , Técnicas de Laboratório Clínico/métodos , Proteínas do Envelope de Coronavírus/genética , Testes Diagnósticos de Rotina , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Controle de Qualidade , RNA Viral/análise , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Adulto Jovem
14.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950412

RESUMO

Natural killer (NK) cells are lymphocytes of the innate immune system capable of killing hazardous cells, including virally infected cells. NK cell-mediated killing is triggered by activating receptors. Prominent among these is the activating receptor NKG2D, which binds several stress-induced ligands, among them major histocompatibility complex (MHC) class I-related chain A (MICA). Most of the human population is persistently infected with human cytomegalovirus (HCMV), a virus which employs multiple immune evasion mechanisms, many of which target NK cell responses. HCMV infection is mostly asymptomatic, but in congenitally infected neonates and in immunosuppressed patients it can lead to serious complications and mortality. Here we discovered that an HCMV protein named UL148A whose role was hitherto unknown is required for evasion of NK cells. We demonstrate that UL148A-deficient HCMV strains are impaired in their ability to downregulate MICA expression. We further show that when expressed by itself, UL148A is not sufficient for MICA targeting, but rather acts in concert with an unknown viral factor. Using inhibitors of different cellular degradation pathways, we show that UL148A targets MICA for lysosomal degradation. Finally, we show that UL148A-mediated MICA downregulation hampers NK cell-mediated killing of HCMV-infected cells. Discovering the full repertoire of HCMV immune evasion mechanisms will lead to a better understanding of the ability of HCMV to persist in the host and may also promote the development of new vaccines and drugs against HCMV.IMPORTANCE Human cytomegalovirus (HCMV) is a ubiquitous pathogen which is usually asymptomatic but that can cause serious complications and mortality in congenital infections and in immunosuppressed patients. One of the difficulties in developing novel vaccines and treatments for HCMV is its remarkable ability to evade our immune system. In particular, HCMV directs significant efforts to thwarting cells of the innate immune system known as natural killer (NK) cells. These cells are crucial for successful control of HCMV infection, and yet our understanding of the mechanisms which HCMV utilizes to elude NK cells is partial at best. In the present study, we discovered that a protein encoded by HCMV which had no known function is important for preventing NK cells from killing HCMV-infected cells. This knowledge can be used in the future for designing more-efficient HCMV vaccines and for formulating novel therapies targeting this virus.


Assuntos
Citomegalovirus/fisiologia , Antígenos de Histocompatibilidade Classe I/genética , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Proteínas Virais de Fusão/fisiologia , Linhagem Celular , Citomegalovirus/genética , Citomegalovirus/imunologia , Regulação para Baixo , Humanos , Ativação Linfocitária , Proteínas Virais de Fusão/genética
15.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743368

RESUMO

A pathogen encounter induces interferons, which signal via Janus kinases and STAT transcription factors to establish an antiviral state. However, the host and pathogens are situated in a continuous arms race which shapes host evolution toward optimized immune responses and the pathogens toward enhanced immune-evasive properties. Mouse cytomegalovirus (MCMV) counteracts interferon responses by pM27-mediated degradation of STAT2, which directly affects the signaling of type I as well as type III interferons. Using MCMV mutants lacking M27 and mice lacking STAT2, we studied the opposing relationship between antiviral activities and viral antagonism in a natural host-pathogen pair in vitro and in vivo In contrast to wild-type (wt) MCMV, ΔM27 mutant MCMV was efficiently cleared from all organs within a few days in BALB/c, C57BL/6, and 129 mice, highlighting the general importance of STAT2 antagonism for MCMV replication. Despite this effective and relevant STAT2 antagonism, wt and STAT2-deficient mice exhibited fundamentally different susceptibilities to MCMV infections. MCMV replication was increased in all assessed organs (e.g., liver, spleen, lungs, and salivary glands) of STAT2-deficient mice, resulting in mortality during the first week after infection. Taken together, the results of our study reveal the importance of cytomegaloviral interferon antagonism for viral replication as well as a pivotal role of the remaining STAT2 activity for host survival. This mutual influence establishes a stable evolutionary standoff situation with fatal consequences when the equilibrium is disturbed.IMPORTANCE The host limits viral replication by the use of interferons (IFNs), which signal via STAT proteins. Several viruses evolved antagonists targeting STATs to antagonize IFNs (e.g., cytomegaloviruses, Zika virus, dengue virus, and several paramyxoviruses). We analyzed infections caused by MCMV expressing or lacking the STAT2 antagonist pM27 in STAT2-deficient and control mice to evaluate its importance for the host and the virus in vitro and in vivo The inability to counteract STAT2 directly translates into exaggerated IFN susceptibility in vitro and pronounced attenuation in vivo Thus, the antiviral activity mediated by IFNs via STAT2-dependent signaling drove the development of a potent MCMV-encoded STAT2 antagonist which became indispensable for efficient virus replication and spread to organs required for dissemination. Despite this clear impact of viral STAT2 antagonism, the host critically required the remaining STAT2 activity to prevent overt disease and mortality upon MCMV infection. Our findings highlight a remarkably delicate balance between host and virus.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/mortalidade , Evasão da Resposta Imune/imunologia , Interferon gama/metabolismo , Muromegalovirus/imunologia , Fator de Transcrição STAT2/metabolismo , Replicação Viral/imunologia , Animais , Células Cultivadas , Infecções por Citomegalovirus/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença , Transdução de Sinais , Taxa de Sobrevida
16.
Int J Mol Sci ; 20(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986950

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that frequently causes morbidity and mortality in individuals with insufficient immunity, such as transplant recipients, AIDS patients, and congenitally infected newborns. Several antiviral drugs are approved to treat HCMV infections. However, resistant HCMV mutants can arise in patients receiving long-term therapy. Additionally, side effects and the risk to cause birth defects limit the use of currently approved antivirals against HCMV. Therefore, the identification of new drug targets is of clinical relevance. Recent work identified DNA-damage binding protein 1 (DDB1) and the family of the cellular cullin (Cul) RING ubiquitin (Ub) ligases (CRLs) as host-derived factors that are relevant for the replication of human and mouse cytomegaloviruses. The first-in-class CRL inhibitory compound Pevonedistat (also called MLN4924) is currently under investigation as an anti-tumor drug in several clinical trials. Cytomegaloviruses exploit CRLs to regulate the abundance of viral proteins, and to induce the proteasomal degradation of host restriction factors involved in innate and intrinsic immunity. Accordingly, pharmacological blockade of CRL activity diminishes viral replication in cell culture. In this review, we summarize the current knowledge concerning the relevance of DDB1 and CRLs during cytomegalovirus replication and discuss chances and drawbacks of CRL inhibitory drugs as potential antiviral treatment against HCMV.


Assuntos
Citomegalovirus/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Humanos , Interferons/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
17.
J Virol ; 90(15): 6686-6698, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27170759

RESUMO

UNLABELLED: The liver constitutes a prime site of cytomegalovirus (CMV) replication and latency. Hepatocytes produce, secrete, and recycle a chemically diverse set of bile acids, with the result that interactions between bile acids and cytomegalovirus inevitably occur. Here we determined the impact of naturally occurring bile acids on mouse CMV (MCMV) replication. In primary mouse hepatocytes, physiological concentrations of taurochenodeoxycholic acid (TCDC), glycochenodeoxycholic acid, and to a lesser extent taurocholic acid significantly reduced MCMV-induced gene expression and diminished the generation of virus progeny, while several other bile acids did not exert antiviral effects. The anticytomegalovirus activity required active import of bile acids via the sodium-taurocholate-cotransporting polypeptide (NTCP) and was consistently observed in hepatocytes but not in fibroblasts. Under conditions in which alpha interferon (IFN-α) lacks antiviral activity, physiological TCDC concentrations were similarly effective as IFN-γ. A detailed investigation of distinct steps of the viral life cycle revealed that TCDC deregulates viral transcription and diminishes global translation in infected cells. IMPORTANCE: Cytomegaloviruses are members of the Betaherpesvirinae subfamily. Primary infection leads to latency, from which cytomegaloviruses can reactivate under immunocompromised conditions and cause severe disease manifestations, including hepatitis. The present study describes an unanticipated antiviral activity of conjugated bile acids on MCMV replication in hepatocytes. Bile acids negatively influence viral transcription and exhibit a global effect on translation. Our data identify bile acids as site-specific soluble host restriction factors against MCMV, which may allow rational design of anticytomegalovirus drugs using bile acids as lead compounds.


Assuntos
Antivirais/farmacologia , Ácidos e Sais Biliares/farmacologia , Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/patogenicidade , Hepatócitos/efeitos dos fármacos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/virologia , Replicação do DNA/efeitos dos fármacos , DNA Viral/genética , Hepatócitos/citologia , Hepatócitos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/fisiologia , Receptor de Interferon alfa e beta/fisiologia
18.
PLoS Pathog ; 11(11): e1005288, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26599541

RESUMO

Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV) does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/genética , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , Transcrição Gênica , Replicação Viral/genética , Linhagem Celular , Infecções por Citomegalovirus/genética , Humanos , RNA Mensageiro/genética
19.
J Hepatol ; 64(2): 380-389, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26299622

RESUMO

BACKGROUND & AIMS: The kinase p38(MAPK) and its downstream target MAPKAP kinase (MK) 2 are critical regulators of inflammatory responses towards pathogens. To date, the relevance of MK2 for regulating IL-10 expression and other cytokine responses towards cytomegalovirus (CMV) infection and the impact of this pathway on viral replication in vitro and in vivo is unknown and the subject of this study. METHODS: The effect of MK2, interferon-α receptor (IFNAR)1, tristetraprolin (TTP) and IL-10 on mouse (M)CMV virus titres, cytokine expression, signal transduction, transcript stability, liver enzymes release, immune cell recruitment and aggregation in response to MCMV infection were studied ex vivo in hepatocytes and macrophages, as well as in vivo. RESULTS: MK2 is critical for MCMV-induced production of IL-10, IFN-α2 and 4, IFN-ß, IL-6, and TNF-α but not for IFN-γ. The MCMV-induced IL-10 production requires activation of IFNAR1 and is further regulated by MK2 and TTP-dependent stabilization of IL-10 transcripts. MK2(-/-) mice are able to control acute MCMV replication, despite deregulated cytokine production. This may be related to the observation that MCMV-infected MK2(-/-) mice show enhanced formation of focal intrahepatic lymphocyte infiltrates resembling intrahepatic myeloid cell aggregates of T cell expansion (iMATEs), which were also observed in MCMV-infected IL-10(-/-) mice but are almost absent in MCMV-infected wild-type controls. CONCLUSIONS: The data suggest that MK2 is critical for regulating cytokine responses towards acute MCMV infection, including that of IL-10 via IFNARI-mediated circuits. MCMV stimulates expression of MK2-dependent cytokines, in particular IL-10 and thereby prevents enhanced formation of intrahepatic iMATE-like cellular aggregates.


Assuntos
Infecções por Citomegalovirus , Interleucina-10/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado , Células Mieloides/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Agregação Celular/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Interferon-alfa/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Receptor de Interferon alfa e beta/metabolismo , Tristetraprolina/metabolismo
20.
J Virol ; 89(16): 8590-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063418

RESUMO

UNLABELLED: Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. IMPORTANCE: Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication and delineated pIE611-dependent changes of the MCMV proteome. Our findings have fundamental implications for the interpretation of earlier studies on pIE3 functions and highlight the complex orchestration of MCMV gene regulation.


Assuntos
Regulação Viral da Expressão Gênica/genética , Proteínas Imediatamente Precoces/genética , Muromegalovirus/metabolismo , Replicação Viral/genética , Animais , Northern Blotting , Hemaglutininas/genética , Espectrometria de Massas , Camundongos , Muromegalovirus/genética , Plasmídeos/genética , Isoformas de Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA