Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Chemistry ; 30(21): e202303993, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38315627

RESUMO

We report an approach to the diastereoselective synthesis of 1,2-disubstituted heterocyclic aziridines. A Brønsted acid-catalyzed conjugate addition of anilines to trisubstituted heterocyclic chloroalkenes provides an intermediate 1,2-chloroamine. Diastereocontrol was found to vary significantly with solvent selection, with computational modelling confirming selective, spontaneous fragmentation in the presence of trace acids, proceeding through a pseudo-cyclic, protonated intermediate and transition state. These chloroamines can then be converted to the aziridine by treatment with LiHMDS with high stereochemical fidelity. This solvent-induced stereochemical enrichment thereby enables an efficient route to rare cis-aziridines with high dr. The scope, limitations, and mechanistic origins of selectivity are also presented.

2.
Acc Chem Res ; 55(9): 1324-1336, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435655

RESUMO

Reagent instability reduces the efficiency of chemical processes, and while much effort is devoted to reaction optimization, less attention is paid to the mechanistic causes of reagent decomposition. Indeed, the response is often to simply use an excess of the reagent. Two reaction classes with ubiquitous examples of this are the Suzuki-Miyaura cross-coupling of boronic acids/esters and the transfer of CF3 or CF2 from the Ruppert-Prakash reagent, TMSCF3. This Account describes some of the overarching features of our mechanistic investigations into their decomposition. In the first section we summarize how specific examples of (hetero)arylboronic acids can decompose via aqueous protodeboronation processes: Ar-B(OH)2 + H2O → ArH + B(OH)3. Key to the analysis was the development of a kinetic model in which pH controls boron speciation and heterocycle protonation states. This method revealed six different protodeboronation pathways, including self-catalysis when the pH is close to the pKa of the boronic acid, and protodeboronation via a transient aryl anionoid pathway for highly electron-deficient arenes. The degree of "protection" of boronic acids by diol-esterification is shown to be very dependent on the diol identity, with six-membered ring esters resulting in faster protodeboronation than the parent boronic acid. In the second section of the Account we describe 19F NMR spectroscopic analysis of the kinetics of the reaction of TMSCF3 with ketones, fluoroarenes, and alkenes. Processes initiated by substoichiometric "TBAT" ([Ph3SiF2][Bu4N]) involve anionic chain reactions in which low concentrations of [CF3]- are rapidly and reversibly liberated from a siliconate reservoir, [TMS(CF3)2][Bu4N]. Increased TMSCF3 concentrations reduce the [CF3]- concentration and thus inhibit the rates of CF3 transfer. Computation and kinetics reveal that the TMSCF3 intermolecularly abstracts fluoride from [CF3]- to generate the CF2, in what would otherwise be an endergonic α-fluoride elimination. Starting from [CF3]- and CF2, a cascade involving perfluoroalkene homologation results in the generation of a hindered perfluorocarbanion, [C11F23]-, and inhibition. The generation of CF2 from TMSCF3 is much more efficiently mediated by NaI, and in contrast to TBAT, the process undergoes autoacceleration. The process involves NaI-mediated α-fluoride elimination from [CF3][Na] to generate CF2 and a [NaI·NaF] chain carrier. Chain-branching, by [(CF2)3I][Na] generated in situ (CF2 + TFE + NaI), causes autoacceleration. Alkenes that efficiently capture CF2 attenuate the chain-branching, suppress autoacceleration, and lead to less rapid difluorocyclopropanation. The Account also highlights how a collaborative approach to experiment and computation enables mechanistic insight for control of processes.


Assuntos
Ésteres , Fluoretos , Alcenos/química , Ácidos Borônicos/química , Ésteres/química , Indicadores e Reagentes , Cinética
3.
Chemistry ; 28(16): e202200060, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35133031

RESUMO

We report a method for the synthesis of chiral vicinal chloroamines via asymmetric protonation of catalytically generated prochiral chloroenamines using chiral Brønsted acids. The process is highly enantioselective, with the origin of asymmetry and catalyst substituent effects elucidated by DFT calculations. We show the utility of the method as an approach to the synthesis of a broad range of heterocycle-substituted aziridines by treatment of the chloroamines with base in a one-pot process, as well as the utility of the process to allow access to vicinal diamines.


Assuntos
Aziridinas , Catálise , Cloraminas , Ciclização , Estereoisomerismo
4.
J Org Chem ; 87(1): 721-729, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34928611

RESUMO

The kinetics of quinuclidine displacement of BH3 from a wide range of Lewis base borane adducts have been measured. Parameterization of these rates has enabled the development of a nucleofugality scale (NFB), shown to quantify and predict the leaving group ability of a range of other Lewis bases. Additivity observed across a number of series R'3-nRnX (X = P, N; R' = aryl, alkyl) has allowed the formulation of related substituent parameters (nfPB, nfAB), providing a means of calculating NFB values for a range of Lewis bases that extends far beyond those experimentally derived. The utility of the nucleofugality parameter is explored by the correlation of the substituent parameter nfPB with the hydrolyses rates of a series of alkyl and aryl MIDA boronates under neutral conditions. This has allowed the identification of MIDA boronates with heteroatoms proximal to the reacting center, showing unusual kinetic lability or stability to hydrolysis.


Assuntos
Boranos , Bases de Lewis , Hidrólise , Cinética
5.
J Am Chem Soc ; 143(50): 21079-21099, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34870970

RESUMO

Chemists have many options for elucidating reaction mechanisms. Global kinetic analysis and classic transition-state probes (e.g., LFERs, Eyring) inevitably form the cornerstone of any strategy, yet their application to increasingly sophisticated synthetic methodologies often leads to a wide range of indistinguishable mechanistic proposals. Computational chemistry provides powerful tools for narrowing the field in such cases, yet wholly simulated mechanisms must be interpreted with great caution. Heavy-atom kinetic isotope effects (KIEs) offer an exquisite but underutilized method for reconciling the two approaches, anchoring the theoretician in the world of calculable observables and providing the experimentalist with atomistic insights. This Perspective provides a personal outlook on this synergy. It surveys the computation of heavy-atom KIEs and their measurement by NMR spectroscopy, discusses recent case studies, highlights the intellectual reward that lies in alignment of experiment and theory, and reflects on the changes required in chemical education in the area.

6.
J Am Chem Soc ; 143(36): 14814-14826, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460235

RESUMO

The kinetics and mechanism of the base-catalyzed hydrolysis (ArB(OR)2 → ArB(OH)2) and protodeboronation (ArB(OR)2 → ArH) of a series of boronic esters, encompassing eight different polyols and 10 polyfluoroaryl and heteroaryl moieties, have been investigated by in situ and stopped-flow NMR spectroscopy (19F, 1H, and 11B), pH-rate dependence, isotope entrainment, 2H KIEs, and KS-DFT computations. The study reveals the phenomenological stability of boronic esters under basic aqueous-organic conditions to be highly nuanced. In contrast to common assumption, esterification does not necessarily impart greater stability compared to the corresponding boronic acid. Moreover, hydrolysis of the ester to the boronic acid can be a dominant component of the overall protodeboronation process, augmented by self-, auto-, and oxidative (phenolic) catalysis when the pH is close to the pKa of the boronic acid/ester.

7.
J Chem Inf Model ; 61(4): 1859-1874, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33755448

RESUMO

Many of the recently developed methods to study the shape of molecules permit one conformation of one molecule to be compared to another conformation of the same or a different molecule: a relative shape. Other methods provide an absolute description of the shape of a conformation that does not rely on comparisons or overlays. Any absolute description of shape can be used to generate a self-organizing map (shape map) that places all molecular shapes relative to one another; in the studies reported here, the shape fingerprint and ultrafast shape recognition methods are employed to create such maps. In the shape maps, molecules that are near one another have similar shapes, and the maps for the 102 targets in the DUD-E set have been generated. By examining the distribution of actives in comparison with their physical-property-matched decoys, we show that the proteins of key-in-lock type (relatively rigid receptor and ligand) can be distinguished from those that are more of a hand-in-glove type (more flexible receptor and ligand). These are linked to known differences in protein flexibility and binding-site size.


Assuntos
Algoritmos , Proteínas , Sítios de Ligação , Ligantes , Conformação Molecular , Conformação Proteica
8.
J Am Chem Soc ; 142(34): 14649-14663, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786804

RESUMO

The mechanism of CF2 transfer from TMSCF3 (1), mediated by TBAT (2-12 mol %) or by NaI (5-20 mol %), has been investigated by in situ/stopped-flow 19F NMR spectroscopic analysis of the kinetics of alkene difluorocyclopropanation and competing TFE/c-C3F6/homologous perfluoroanion generation, 13C/2H KIEs, LFERs, CF2 transfer efficiency and selectivity, the effect of inhibitors, and density functional theory (DFT) calculations. The reactions evolve with profoundly different kinetics, undergoing autoinhibition (TBAT) or quasi-stochastic autoacceleration (NaI) and cogenerating perfluoroalkene side products. An overarching mechanism involving direct and indirect fluoride transfer from a CF3 anionoid to TMSCF3 (1) has been elucidated. It allows rationalization of why the NaI-mediated process is more effective for less-reactive alkenes and alkynes, why a large excess of TMSCF3 (1) is required in all cases, and why slow-addition protocols can be of benefit. Issues relating to exothermicity, toxicity, and scale-up are also noted.

9.
Chemistry ; 26(53): 12249-12255, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32539163

RESUMO

A catalytic enantioselective synthesis of heterocyclic vicinal fluoroamines is reported. A chiral Brønsted acid promotes aza-Michael addition to fluoroalkenyl heterocycles to give a prochiral enamine intermediate that undergoes asymmetric protonation upon rearomatization. The reaction accommodates a range of azaheterocycles and nucleophiles, generating the C-F stereocentre in high enantioselectivity, and is also amenable to stereogenic C-CF3 bonds. Extensive DFT calculations provided evidence for stereocontrolled proton transfer from catalyst to substrate as the rate-determining step, and showed the importance of steric interactions from the catalyst's alkyl groups in enforcing the high enantioselectivity. Crystal structure data show the dominance of noncovalent interactions in the core structure conformation, enabling modulation of the conformational landscape. Ramachandran-type analysis of conformer distribution and Protein Data Bank mining indicated that benzylic fluorination by this approach has the potential to improve the potency of several marketed drugs.

10.
Chemistry ; 26(17): 3661-3687, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-31709642

RESUMO

The two enantiomers of a compound often have profoundly different biological properties and thus their liability to racemisation in aqueous solutions is an important piece of information. The authors reviewed the available data concerning the process of racemisation in vivo, in the presence of biological molecules (e.g., racemase enzymes, serum albumin, cofactors and derivatives) and under purely chemical but aqueous conditions (acid, base and other aqueous systems). Mechanistic studies are described critically in light of reported kinetic data. The types of experimental measurement that can be used to effectively determine rate constants of racemisation in various conditions are discussed and the data they provide is summarised. The proposed origins of enzymatic racemisation are presented and suggest ways to promote the process that are different from processes taking place in bulk water. Experimental and computational studies that provide understanding and quantitative predictions of racemisation risk are also presented.


Assuntos
Racemases e Epimerases/química , Albumina Sérica/química , Cinética , Estereoisomerismo
11.
J Am Chem Soc ; 141(46): 18600-18611, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31656074

RESUMO

The mechanism of R2BH-catalyzed hydroboration of alkynes by 1,3,2-dioxaborolanes has been investigated by in situ 19F NMR spectroscopy, kinetic simulation, isotope entrainment, single-turnover labeling (10B/2H), and density functional theory (DFT) calculations. For the Cy2BH-catalyzed hydroboration 4-fluorophenylacetylene by pinacolborane, the resting state is the anti-Markovnikov addition product ArCH = CHBCy2. Irreversible and turnover-rate limiting reaction with pinacolborane (k ≈ 7 × 10-3 M-1 s-1) regenerates Cy2BH and releases E-Ar-CH═CHBpin. Two irreversible events proceed in concert with turnover. The first is a Markovnikov hydroboration leading to regioisomeric Ar-C(Bpin)═CH2. This is unreactive to pinacolborane at ambient temperature, resulting in catalyst inhibition every ∼102 turnovers. The second is hydroboration of the alkenylboronate to give ArCH2CH(BCy2)Bpin, again leading to catalyst inhibition. 9-BBN behaves analogously to Cy2BH, but with higher anti-Markovnikov selectivity, a lower barrier to secondary hydroboration, and overall lower efficiency. The key process for turnover is B-H/C-B metathesis, proceeding by stereospecific transfer of the E-alkenyl group within a transient, µ-B-H-B bridged, 2-electron-3-center bonded B-C-B intermediate.

12.
Chemistry ; 25(1): 177-182, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30255959

RESUMO

A growing number of approaches to "staple" α-helical peptides into a bioactive conformation using cysteine cross-linking are emerging. Here, the replacement of l-cysteine with "cysteine analogues" in combinations of different stereochemistry, side chain length and beta-carbon substitution, is explored to examine the influence that the thiol-containing residue(s) has on target protein binding affinity in a well-explored model system, p53-MDM2/MDMX, which is constituted by the interaction of the tumour suppressor protein p53 and proteins MDM2 and MDMX, which regulate p53 activity. In some cases, replacement of one or more l-cysteine residues afforded significant changes in the measured binding affinity and target selectivity of the peptide. Computationally constructed homology models indicate that some modifications, such as incorporating two d-cysteine residues, favourably alter the positions of key functional amino acid side chains, which is likely to cause changes in binding affinity, in agreement with measured surface plasmon resonance data.


Assuntos
Cisteína/química , Fluorocarbonos/química , Peptídeos/química , Sequência de Aminoácidos , Cisteína/metabolismo , Humanos , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Org Biomol Chem ; 17(12): 3218-3224, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30840013

RESUMO

The capacity of hydrazone bonds to readily undergo component exchange processes sees their extensive utilization in dynamic combinatorial chemistry. The kinetics of hydrazone exchange are optimal at pH ∼4.5, which limits the use of hydrazone-based dynamic combinatorial libraries, particularly for biological targets which are only stable at near-neutral pH values. It would thus be advantageous if hydrazone exchange proceeded with faster rates at pH values closer to neutral. We experimentally and computationally evaluated the hypothesis that hydrazones possessing neighbouring acidic or basic functional groups within the carbonyl-derived moitety of the hydrazone would enhance exchange rates. Our work suggests that judiciously placed N- or O-hydrogen bond acceptors within the carbonyl-derived moiety of the hydrazone stabilize transition states via hydrogen bonding interactions, providing a valuable boost to exchange kinetics at near-neutral pH values. We anticipate these findings will be of interest in dynamic combinatorial chemistry, dynamic covalent polymers/materials, functionalized nanoparticles and interlocked molecules, all of which may benefit from hydrazone exchange processes able to operate at near-neutral pH values.

14.
J Am Chem Soc ; 140(35): 11112-11124, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30080973

RESUMO

The mechanism of CF3 transfer from R3SiCF3 (R = Me, Et, iPr) to ketones and aldehydes, initiated by M+X- (<0.004 to 10 mol %), has been investigated by analysis of kinetics (variable-ratio stopped-flow NMR and IR), 13C/2H KIEs, LFER, addition of ligands (18-c-6, crypt-222), and density functional theory calculations. The kinetics, reaction orders, and selectivity vary substantially with reagent (R3SiCF3) and initiator (M+X-). Traces of exogenous inhibitors present in the R3SiCF3 reagents, which vary substantially in proportion and identity between batches and suppliers, also affect the kinetics. Some reactions are complete in milliseconds, others take hours, and others stall before completion. Despite these differences, a general mechanism has been elucidated in which the product alkoxide and CF3- anion act as chain carriers in an anionic chain reaction. Silyl enol ether generation competes with 1,2-addition and involves protonation of CF3- by the α-C-H of the ketone and the OH of the enol. The overarching mechanism for trifluoromethylation by R3SiCF3, in which pentacoordinate siliconate intermediates are unable to directly transfer CF3- as a nucleophile or base, rationalizes why the turnover rate (per M+X- initiator) depends on the initial concentration (but not identity) of X-, the identity (but not concentration) of M+, the identity of the R3SiCF3 reagent, and the carbonyl/R3SiCF3 ratio. It also rationalizes which R3SiCF3 reagent effects the most rapid trifluoromethylation, for a specific M+X- initiator.

15.
Angew Chem Int Ed Engl ; 57(35): 11374-11377, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29956430

RESUMO

The direct enantioselective synthesis of chiral azaheteroaryl ethylamines from vinyl-substituted N-heterocycles and anilines is reported. A chiral phosphoric acid (CPA) catalyst promotes dearomatizing aza-Michael addition to give a prochiral exocyclic aryl enamine, which undergoes asymmetric protonation upon rearomatization. The reaction accommodates a broad range of N-heterocycles, nucleophiles, and substituents on the prochiral centre, generating the products in high enantioselectivity. DFT studies support a facile nucleophilic addition based on catalyst-induced LUMO lowering, with site-selective, rate-limiting, intramolecular asymmetric proton transfer from the ion-paired prochiral intermediate.

16.
Angew Chem Int Ed Engl ; 57(4): 982-985, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29072355

RESUMO

Racemization has a large impact upon the biological properties of molecules but the chemical scope of compounds with known rate constants for racemization in aqueous conditions was hitherto limited. To address this remarkable blind spot, we have measured the kinetics for racemization of 28 compounds using circular dichroism and 1 H NMR spectroscopy. We show that rate constants for racemization (measured by ourselves and others) correlate well with deprotonation energies from quantum mechanical (QM) and group contribution calculations. Such calculations thus provide predictions of the second-order rate constants for general-base-catalyzed racemization that are usefully accurate. When applied to recent publications describing the stereoselective synthesis of compounds of purported biological value, the calculations reveal that racemization would be sufficiently fast to render these expensive syntheses pointless.

17.
J Am Chem Soc ; 139(37): 13156-13165, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28823150

RESUMO

Pioneering studies by Kuivila, published more than 50 years ago, suggested ipso protonation of the boronate as the mechanism for base-catalyzed protodeboronation of arylboronic acids. However, the study was limited to UV spectrophotometric analysis under acidic conditions, and the aqueous association constants (Ka) were estimated. By means of NMR, stopped-flow IR, and quenched-flow techniques, the kinetics of base-catalyzed protodeboronation of 30 different arylboronic acids has now been determined at pH > 13 in aqueous dioxane at 70 °C. Included in the study are all 20 isomers of C6HnF(5-n)B(OH)2 with half-lives spanning 9 orders of magnitude: <3 ms to 6.5 months. In combination with pH-rate profiles, pKa and ΔS⧧ values, kinetic isotope effects (2H, 10B, 13C), linear free-energy relationships, and density functional theory calculations, we have identified a mechanistic regime involving unimolecular heterolysis of the boronate competing with concerted ipso protonation/C-B cleavage. The relative Lewis acidities of arylboronic acids do not correlate with their protodeboronation rates, especially when ortho substituents are present. Notably, 3,5-dinitrophenylboronic acid is orders of magnitude more stable than tetra- and pentafluorophenylboronic acids but has a similar pKa.

18.
J Chem Inf Model ; 57(10): 2424-2436, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28967750

RESUMO

We have applied the two most commonly used methods for automatic matched pair identification, obtained the optimum settings, and discovered that the two methods are synergistic. A turbocharging approach to matched pair analysis is advocated in which a first round (a conservative categorical approach that uses an analogy with coin flips, heads corresponding to an increase in a measured property, tails to a decrease, and a biased coin to a structural change that reliably causes a change in that property) provides the settings for a second round (which uses the magnitude of the change in properties). Increased chemical specificity allows reliable knowledge to be extracted from smaller sets of pairs, and an assay-specific upper limit can be placed on the number of pairs required before adequate sampling of variability has been achieved.


Assuntos
Modelos Químicos , Desenho de Fármacos , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
19.
J Am Chem Soc ; 138(29): 9145-57, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27355973

RESUMO

pH-rate profiles for aqueous-organic protodeboronation of 18 boronic acids, many widely viewed as unstable, have been studied by NMR and DFT. Rates were pH-dependent, and varied substantially between the boronic acids, with rate maxima that varied over 6 orders of magnitude. A mechanistic model containing five general pathways (k1-k5) has been developed, and together with input of [B]tot, KW, Ka, and KaH, the protodeboronation kinetics can be correlated as a function of pH (1-13) for all 18 species. Cyclopropyl and vinyl boronic acids undergo very slow protodeboronation, as do 3- and 4-pyridyl boronic acids (t0.5 > 1 week, pH 12, 70 °C). In contrast, 2-pyridyl and 5-thiazolyl boronic acids undergo rapid protodeboronation (t0.5 ≈ 25-50 s, pH 7, 70 °C), via fragmentation of zwitterionic intermediates. Lewis acid additives (e.g., Cu, Zn salts) can attenuate (2-pyridyl) or accelerate (5-thiazolyl and 5-pyrazolyl) fragmentation. Two additional processes compete when the boronic acid and the boronate are present in sufficient proportions (pH = pKa ± 1.6): (i) self-/autocatalysis and (ii) sequential disproportionations of boronic acid to borinic acid and borane.

20.
Org Biomol Chem ; 13(9): 2555-60, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25604694

RESUMO

A combined experimental and computational study suggests that a reduction in the entropy of activation in the solid state can lead to the protodeboronation of boronic acids.


Assuntos
Ácidos Borônicos/química , Prótons , Estrutura Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA