Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(14): e202318916, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38324462

RESUMO

We report the preparation and characterization of the dinuclear AuII hydroxide complex AuII 2(L)2(OH)2 (L=N,N'-bis (2,6-dimethyl) phenylformamidinate) and study its reactivity towards weak X-H bonds. Through the interplay of kinetic analysis and computational studies, we demonstrate that the oxidation of cyclohexadiene follows a concerted proton-coupled electron transfer (cPCET) mechanism, a rare type of reactivity for Au complexes. We find that the Au-Au σ-bond undergoes polarization in the PCET event leading to an adjustment of oxidation levels for both Au centers prior to C(sp3)-H bond cleavage. We thus describe the oxidation event as a valence tautomerism-induced PCET where the basicity of one reduced Au-OH unit provides a proton acceptor and the second more oxidized Au center serves as an electron acceptor. The coordination of these events allows for unprecedented radical-type reactivity by a closed shell AuII complex.

2.
Chemistry ; 29(56): e202301911, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37427720

RESUMO

The reported tetracoordinate dilithio methandiide complex from Liddle and co-workers (1) is investigated from a coordination chemistry perspective, to probe the origin of its intriguing geometry. Through the application of a variety of computational techniques, non-covalent (steric, electrostatic) interactions are found to be dominant. Further, we arrive at a bonding description which emphasizes the tricoordinate sp2 -hybridized nature of the central methandiide carbon, differing somewhat from the original proposal. Thus, 1 is distinct from other dilithio methandiides since it contains only one C-Li σ-bond, and is found to be comparable to a simple aryllithium compound, phenyllithium.

3.
Angew Chem Int Ed Engl ; 62(3): e202215523, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36508713

RESUMO

Several gold +I and +III complexes are investigated computationally and spectroscopically, focusing on the d-configuration and physical oxidation state of the metal center. Density functional theory calculations reveal the non-negligible electron-sharing covalent character of the metal-to-ligand σ-bonding framework. The bonding of gold(III) is shown to be isoelectronic to the formal CuIII complex [Cu(CF3 )4 ]1- , in which the metal center tries to populate its formally unoccupied 3dx2-y2 orbital via σ-bonding, leading to a reduced d10 CuI description. However, Au L3 -edge X-ray absorption spectroscopy reveals excitation into the d-orbital of the AuIII species is still possible, showing that a genuine d10 configuration is not achieved. We also find an increased electron-sharing nature of the σ-bonds in the AuI species, relative to their AgI and CuI analogues, due to the low-lying 6s orbital. We propose that gold +I and +III complexes form similar bonds with substrates, owing primarily to participation of the 5dx2-y2 or 6s orbital, respectively, in bonding, indicating why AuI and AuIII complexes often have similar reactivity.

4.
Chemistry ; 28(40): e202200599, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35506505

RESUMO

C(sp3 )-H and O-H bond breaking steps in the oxidation of 1,4-cyclohexadiene and phenol by a Au(III)-OH complex were studied computationally. The analysis reveals that for both types of bonds the initial X-H cleavage step proceeds via concerted proton coupled electron transfer (cPCET), reflecting electron transfer from the substrate directly to the Au(III) centre and proton transfer to the Au-bound oxygen. This mechanistic picture is distinct from the analogous formal Cu(III)-OH complexes studied by the Tolman group (J. Am. Chem. Soc. 2019, 141, 17236-17244), which proceed via hydrogen atom transfer (HAT) for C-H bonds and cPCET for O-H bonds. Hence, care should be taken when transferring concepts between Cu-OH and Au-OH species. Furthermore, the ability of Au-OH complexes to perform cPCET suggests further possibilities for one-electron chemistry at the Au centre, for which only limited examples exist.


Assuntos
Elétrons , Prótons , Ouro , Hidrogênio/química , Hidróxidos , Oxirredução
5.
Eur J Inorg Chem ; 2022(27): e202200247, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36619312

RESUMO

The formal Cu(III) complex [Cu(CF3)4]1- has often served as a paradigmatic example of challenging oxidation state assignment - with many reports proposing conflicting descriptions. Here we report a computational analysis of this compound, employing Energy Decomposition Analysis and Intrinsic Bond Orbital Analysis. We present a quasi-d 10 perspective of the metal centre, resulting from ambiguities in d-electron counting. The implications for describing reactions which undergo oxidation state changes, such as the formal reductive elimination from the analogous [Cu(CF3)3(CH2Ph)]1- complex (Paeth et al. J. Am. Chem. Soc. 2019, 141, 3153), are probed. Electron flow analysis finds that the changes in electronic structure may be understood as a quasi-d 10 to d 10 transition at the metal centre, rendering this process essentially redox neutral. This is reminiscent of a previously studied formal Ni(IV) complex (Steen et al., Angew. Chem. Int. Ed. 2019, 58, 13133-13139), and indicates that our description of electronic structure has implications for the understanding of elementary organometallic reaction steps.

6.
Angew Chem Int Ed Engl ; 61(41): e202211345, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35978531

RESUMO

Cytochrome P450s and Galactose Oxidases exploit redox active ligands to form reactive high valent intermediates for oxidation reactions. This strategy works well for the late 3d metals where accessing high valent states is rather challenging. Herein, we report the oxidation of NiII (salen) (salen=N,N'-bis(3,5-di-tert-butyl-salicylidene)-1,2-cyclohexane-(1R,2R)-diamine) with mCPBA (meta-chloroperoxybenzoic acid) to form a fleeting NiIII bisphenoxyl diradical species, in CH3 CN and CH2 Cl2 at -40 °C. Electrochemical and spectroscopic analyses using UV/Vis, EPR, and resonance Raman spectroscopies revealed oxidation events both on the ligand and the metal centre to yield a NiIII bisphenoxyl diradical species. DFT calculations found the electronic structure of the ligand and the d-configuration of the metal center to be consistent with a NiIII bisphenoxyl diradical species. This three electron oxidized species can perform hydrogen atom abstraction and oxygen atom transfer reactions.


Assuntos
Galactose , Níquel , Clorobenzoatos , Cicloexanos , Citocromos , Diaminas , Etilenodiaminas , Galactose Oxidase , Hidrogênio , Ligantes , Metais , Níquel/química , Oxirredução , Oxigênio
7.
Chemphyschem ; 22(12): 1262-1268, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33729673

RESUMO

Computationally obtaining structural parameters along a reaction coordinate is commonly performed with Kohn-Sham density functional theory which generally provides a good balance between speed and accuracy. However, CPU times still range from inconvenient to prohibitive, depending on the size of the system under study. Herein, the tight binding GFN2-xTB method [C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652] is investigated as an alternative to produce reasonable geometries along a reaction path, that is, reactant, product and transition state structures for a series of transformations involving gold complexes. A small mean error (1 kcal/mol) was found, with respect to an efficient composite hybrid-GGA exchange-correlation functional (PBEh-3c) paired with a double-ζ basis set, which is 2-3 orders of magnitude slower. The outlined protocol may serve as a rapid tool to probe the viability of proposed mechanistic pathways in the field of gold catalysis.

8.
Dalton Trans ; 52(1): 11-15, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35877065

RESUMO

Nucleophilic formal gold(-I) and gold(I) complexes are investigated via Intrinsic Bond Orbital analysis and Energy Decomposition Analysis, based on density functional theory calculations. The results indicate gold(0) centres engaging in electron-sharing bonding with Al- and B- based ligands. Multiconfigurational (CASSCF) calculations corroborate the findings, highlighting the gap between the electonic structures and the oxidation state formalism.

9.
ACS Catal ; 12(21): 13158-13163, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366761

RESUMO

A systematic study of protodeauration, a crucial step often found in gold catalysis, was performed using isolated vinyl gold(I) complexes. By varying substituents on gold complexes, we explore how their properties influence protodeauration. Phenols were employed as the proton source, and their substituents were also varied, providing insight through variation of their acidity. A linear Hammett correlation is identified for the series of substituted vinyl gold(I) complexes, while a nonlinear trend is found for the series of substituted phenols. Computationally, we reproduce our experimental observations and identify significant noncovalent interactions (NCIs) between the proton donor and vinyl gold(I) complexes. This finding is of particular importance for gold-catalyzed reactions as they often employ linear two-coordinate complexes where the site of the reaction is spatially remote from the ligand bound to gold. The NCIs between substrates and intermediates lead to a significant acceleration of the protodeauration step in this work, opening the door to alternative strategies in the field of gold catalysis.

10.
J Phys Chem C Nanomater Interfaces ; 123(42): 25908-25914, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31673304

RESUMO

This paper describes an experimental approach to eliminating the loss of reversibility that surface-bound spiropyrans exhibit when switched with light. Although such fatigue can be controlled in other contexts, on surfaces, the photochromic compounds are held in close proximity to each other and relatively few molecules modulate the properties of a device, leading to a loss of functionality after only a few switching cycles. The switching process was characterized by photoelectron spectroscopy and differences in tunneling currents in the spiropyran and merocyanine forms using eutectic Ga-In. Self-assembled monolayers comprising only the photochromic compounds degraded rapidly, while mixed monolayers with hexanethiol showed different behaviors depending on the relative humidity. Under dry conditions, no chemical degradation was observed and the switching process was reversible over at least 100 cycles. Under humid conditions, no degradation occurred, but the switching process became irreversible. The absence of degradation observed in mixed monolayers is ascribed to the lack of solvation, which increases the barrier to a key bond rotation past the available thermal energy. These results highlight important differences in the contexts in which photochromic compounds are utilized and demonstrate that they can be leveraged to extract device-relevant functionality from surface-bound switches by suppressing fatigue and irreversibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA