RESUMO
We report the first measurement of the parity-violating elastic electron scattering asymmetry on ^{27}Al. The ^{27}Al elastic asymmetry is A_{PV}=2.16±0.11(stat)±0.16(syst) ppm, and was measured at ⟨Q^{2}⟩=0.02357±0.00010 GeV^{2}, ⟨θ_{lab}⟩=7.61°±0.02°, and ⟨E_{lab}⟩=1.157 GeV with the Q_{weak} apparatus at Jefferson Lab. Predictions using a simple Born approximation as well as more sophisticated distorted-wave calculations are in good agreement with this result. From this asymmetry the ^{27}Al neutron radius R_{n}=2.89±0.12 fm was determined using a many-models correlation technique. The corresponding neutron skin thickness R_{n}-R_{p}=-0.04±0.12 fm is small, as expected for a light nucleus with a neutron excess of only 1. This result thus serves as a successful benchmark for electroweak determinations of neutron radii on heavier nuclei. A tree-level approach was used to extract the ^{27}Al weak radius R_{w}=3.00±0.15 fm, and the weak skin thickness R_{wk}-R_{ch}=-0.04±0.15 fm. The weak form factor at this Q^{2} is F_{wk}=0.39±0.04.
RESUMO
A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of θ_{lab}=7.9° and a mean energy of 1.149 GeV. The asymmetry result is B_{n}=-5.194±0.067(stat)±0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles (θ_{lab}â0) where they should be most reliable.
RESUMO
The Q(weak) experiment has measured the parity-violating asymmetry in ep elastic scattering at Q(2)=0.025(GeV/c)(2), employing 145 µA of 89% longitudinally polarized electrons on a 34.4 cm long liquid hydrogen target at Jefferson Lab. The results of the experiment's commissioning run, constituting approximately 4% of the data collected in the experiment, are reported here. From these initial results, the measured asymmetry is A(ep)=-279±35 (stat) ± 31 (syst) ppb, which is the smallest and most precise asymmetry ever measured in ep scattering. The small Q(2) of this experiment has made possible the first determination of the weak charge of the proton Q(W)(p) by incorporating earlier parity-violating electron scattering (PVES) data at higher Q(2) to constrain hadronic corrections. The value of Q(W)(p) obtained in this way is Q(W)(p)(PVES)=0.064±0.012, which is in good agreement with the standard model prediction of Q(W)(p)(SM)=0.0710±0.0007. When this result is further combined with the Cs atomic parity violation (APV) measurement, significant constraints on the weak charges of the up and down quarks can also be extracted. That PVES+APV analysis reveals the neutron's weak charge to be Q(W)(n)(PVES+APV)=-0.975±0.010.