Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898280

RESUMO

Spin accumulation in semiconductor structures at room temperature and without magnetic fields is key to enable a broader range of optoelectronic functionality1. Current efforts are limited owing to inherent inefficiencies associated with spin injection across semiconductor interfaces2. Here we demonstrate spin injection across chiral halide perovskite/III-V interfaces achieving spin accumulation in a standard semiconductor III-V (AlxGa1-x)0.5In0.5P multiple quantum well light-emitting diode. The spin accumulation in the multiple quantum well is detected through emission of circularly polarized light with a degree of polarization of up to 15 ± 4%. The chiral perovskite/III-V interface was characterized with X-ray photoelectron spectroscopy, cross-sectional scanning Kelvin probe force microscopy and cross-sectional transmission electron microscopy imaging, showing a clean semiconductor/semiconductor interface at which the Fermi level can equilibrate. These findings demonstrate that chiral perovskite semiconductors can transform well-developed semiconductor platforms into ones that can also control spin.

2.
Proc Natl Acad Sci U S A ; 115(42): 10570-10575, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30282733

RESUMO

The rapidly expanding class of quantum materials known as topological semimetals (TSMs) displays unique transport properties, including a striking dependence of resistivity on applied magnetic field, that are of great interest for both scientific and technological reasons. So far, many possible sources of extraordinarily large nonsaturating magnetoresistance have been proposed. However, experimental signatures that can identify or discern the dominant mechanism and connect to available theories are scarce. Here we present the magnetic susceptibility (χ), the tangent of the Hall angle ([Formula: see text]), along with magnetoresistance in four different nonmagnetic semimetals with high mobilities, NbP, TaP, NbSb2, and TaSb2, all of which exhibit nonsaturating large magnetoresistance (MR). We find that the distinctly different temperature dependences, [Formula: see text], and the values of [Formula: see text] in phosphides and antimonates serve as empirical criteria to sort the MR from different origins: NbP and TaP are uncompensated semimetals with linear dispersion, in which the nonsaturating magnetoresistance arises due to guiding center motion, while NbSb2 and TaSb2 are compensated semimetals, with a magnetoresistance emerging from nearly perfect charge compensation of two quadratic bands. Our results illustrate how a combination of magnetotransport and susceptibility measurements may be used to categorize the increasingly ubiquitous nonsaturating large magnetoresistance in TSMs.

3.
Phys Rev Lett ; 118(18): 187203, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28524686

RESUMO

We report on the unusual behavior of the in-plane thermal conductivity κ and torque τ response in the Kitaev-Heisenberg material α-RuCl_{3}. κ shows a striking enhancement with linear growth beyond H=7 T, where magnetic order disappears, while τ for both of the in-plane symmetry directions shows an anomaly at the same field. The temperature and field dependence of κ are far more complex than conventional phonon and magnon contributions, and require us to invoke the presence of unconventional spin excitations whose properties are characteristic of a field-induced spin-liquid phase related to the enigmatic physics of the Kitaev model in an applied magnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA