Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Glob Chang Biol ; 29(7): 1791-1808, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36656050

RESUMO

The western Antarctic Peninsula (WAP) is a climatically sensitive region where foundational changes at the basis of the food web have been recorded; cryptophytes are gradually outgrowing diatoms together with a decreased size spectrum of the phytoplankton community. Based on a 11-year (2008-2018) in-situ dataset, we demonstrate a strong coupling between biomass accumulation of cryptophytes, summer upper ocean stability, and the mixed layer depth. Our results shed light on the environmental conditions favoring the cryptophyte success in coastal regions of the WAP, especially during situations of shallower mixed layers associated with lower diatom biomass, which evidences a clear competition or niche segregation between diatoms and cryptophytes. We also unravel the cryptophyte photo-physiological niche by exploring its capacity to thrive under high light stress normally found in confined stratified upper layers. Such conditions are becoming more frequent in the Antarctic coastal waters and will likely have significant future implications at various levels of the marine food web. The competitive advantage of cryptophytes in environments with significant light level fluctuations was supported by laboratory experiments that revealed a high flexibility of cryptophytes to grow in different light conditions driven by a fast photo-regulating response. All tested physiological parameters support the hypothesis that cryptophytes are highly flexible regarding their growing light conditions and extremely efficient in rapidly photo-regulating changes to environmental light levels. This plasticity would give them a competitive advantage in exploiting an ecological niche where light levels fluctuate quickly. These findings provide new insights on niche separation between diatoms and cryptophytes, which is vital for a thorough understanding of the WAP marine ecosystem.


Assuntos
Diatomáceas , Ecossistema , Regiões Antárticas , Fitoplâncton , Cadeia Alimentar , Biomassa
2.
Adv Mar Biol ; 71: 1-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26320615

RESUMO

The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions.


Assuntos
Organismos Aquáticos , Cadeia Alimentar , Invertebrados/classificação , Invertebrados/fisiologia , Animais , Estágios do Ciclo de Vida , Reprodução/fisiologia
3.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25209942

RESUMO

Sharks are one of the most threatened groups of marine animals worldwide, mostly owing to overfishing and habitat degradation/loss. Although these cartilaginous fish have evolved to fill many ecological niches across a wide range of habitats, they have limited capability to rapidly adapt to human-induced changes in their environments. Contrary to global warming, ocean acidification was not considered as a direct climate-related threat to sharks. Here we show, for the first time, that an early ontogenetic acclimation process of a tropical shark (Chiloscyllium punctatum) to the projected scenarios of ocean acidification (ΔpH = 0.5) and warming (+4°C; 30°C) for 2100 elicited significant impairments on juvenile shark condition and survival. The mortality of shark embryos at the present-day thermal scenarios was 0% both at normocapnic and hypercapnic conditions. Yet routine metabolic rates (RMRs) were significantly affected by temperature, pH and embryonic stage. Immediately after hatching, the Fulton condition of juvenile bamboo sharks was significantly different in individuals that experienced future warming and hypercapnia; 30 days after hatching, survival rapidly declined in individuals experiencing both ocean warming and acidification (up to 44%). The RMR of juvenile sharks was also significantly affected by temperature and pH. The impact of low pH on ventilation rates was significant only under the higher thermal scenario. This study highlights the need of experimental-based risk assessments of sharks to climate change. In other words, it is critical to directly assess risk and vulnerability of sharks to ocean acidification and warming, and such effort can ultimately help managers and policy-makers to take proactive measures targeting most endangered species.


Assuntos
Mudança Climática , Água do Mar/química , Tubarões/genética , Aclimatação , Animais , Aquecimento Global , Concentração de Íons de Hidrogênio , Oceanos e Mares , Tubarões/embriologia , Tubarões/fisiologia , Clima Tropical
4.
Mar Drugs ; 12(7): 3929-52, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24983638

RESUMO

The chemical diversity associated with marine natural products (MNP) is unanimously acknowledged as the "blue gold" in the urgent quest for new drugs. Consequently, a significant increase in the discovery of MNP published in the literature has been observed in the past decades, particularly from marine invertebrates. However, it remains unclear whether target metabolites originate from the marine invertebrates themselves or from their microbial symbionts. This issue underlines critical challenges associated with the lack of biomass required to supply the early stages of the drug discovery pipeline. The present review discusses potential solutions for such challenges, with particular emphasis on innovative approaches to culture invertebrate holobionts (microorganism-invertebrate assemblages) through in toto aquaculture, together with methods for the discovery and initial production of bioactive compounds from these microbial symbionts.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Invertebrados/metabolismo , Biologia Marinha , Microbiologia da Água , Animais , Aquicultura , Cnidários/metabolismo , Moluscos/metabolismo , Poríferos/metabolismo
5.
Proc Biol Sci ; 280(1768): 20131695, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23926158

RESUMO

The combined effects of future ocean acidification and global warming on the hypoxia thresholds of marine biota are, to date, poorly known. Here, we show that the future warming and acidification scenario led to shorter embryonic periods, lower survival rates and the enhancement of premature hatching in the cuttlefish Sepia officinalis. Routine metabolic rates increased during the embryonic period, but environmental hypercapnia significantly depressed pre-hatchling's energy expenditures rates (independently of temperature). During embryogenesis, there was also a significant rise in the carbon dioxide partial pressure in the perivitelline fluid (PVF), bicarbonate levels, as well as a drop in pH and oxygen partial pressure (pO2). The critical partial pressure (i.e. hypoxic threshold) of the pre-hatchlings was significantly higher than the PVF oxygen partial pressure at the warmer and hypercapnic condition. Thus, the record of oxygen tensions below critical pO2 in such climate scenario indicates that the already harsh conditions inside the egg capsules are expected to be magnified in the years to come, especially in populations at the border of their thermal envelope. Such a scenario promotes untimely hatching and smaller post-hatching body sizes, thus challenging the survival and fitness of early life stages.


Assuntos
Hipóxia Celular , Decapodiformes/fisiologia , Animais , Dióxido de Carbono/metabolismo , Mudança Climática , Decapodiformes/embriologia , Desenvolvimento Embrionário , Metabolismo Energético , Concentração de Íons de Hidrogênio , Oceanos e Mares , Pressão Parcial , Temperatura
6.
Molecules ; 17(8): 9842-54, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22898739

RESUMO

Bioprospecting for new marine natural products (NPs) has increased significantly over the last decades, leading to an unprecedented discovery of new molecules. Marine invertebrates have been the most important source of these NPs, with researchers commonly targeting particular taxonomic groups, marine regions and/or molecules from specific chemical groups. The present review focuses on new NPs identified from marine invertebrates between 2000 and 2009, and performs a detailed analysis on: (1) the chemical groups of these NPs; (2) the association of particular chemical groups to specific marine invertebrate taxa; and (3) the yielding of molecules from the same chemical group from organisms occurring in a particular geographic region. Our survey revealed an increasing number of new terpenoids being discovered between 2000 and 2009, contrasting with the decreasing trend in the discovery of new alkaloids and aliphatic molecules. Overall, no particular association was identified between marine invertebrate taxa and chemical groups of new NPs. Nonetheless, it is worth noting that most NPs recorded from cnidarians and mollusks were terpenoids, while most NPs identified in echinoderms were aliphatic compounds or carbohydrates. The geographical trends observed in our study do not support the idea of particular chemical groups of new NPs being associated with marine invertebrates from any specific geographical region, as NPs from different chemical groups were commonly distributed worldwide.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/química , Invertebrados/química , Animais , Geografia
7.
Trends Biotechnol ; 38(9): 940-943, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32327207

RESUMO

The bioeconomy is a new paradigm for the sustainable development of society. Novel uses of blue bioresources and biotechnology solutions, co-created with value chain stakeholders, accelerate the bioeconomy, foster innovation, and promote novel circular business models. Bottom-up approaches sharing visions, needs, and expertise are key to the successful implementation of bioeconomy initiatives.


Assuntos
Biomassa , Biotecnologia/economia , União Europeia/economia , Conservação dos Recursos Naturais , Humanos
8.
Ecol Evol ; 9(1): 723-740, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680151

RESUMO

Mutualistic nutritional symbioses are widespread in marine ecosystems. They involve the association of a host organism (algae, protists, or marine invertebrates) with symbiotic microorganisms, such as bacteria, cyanobacteria, or dinoflagellates. Nutritional interactions between the partners are difficult to identify in symbioses because they only occur in intact associations. Stable isotope analysis (SIA) has proven to be a useful tool to highlight original nutrient sources and to trace nutrients acquired by and exchanged between the different partners of the association. However, although SIA has been extensively applied to study different marine symbiotic associations, there is no review taking into account of the different types of symbiotic associations, how they have been studied via SIA, methodological issues common among symbiotic associations, and solutions that can be transferred from one type of association with another. The present review aims to fill such gaps in the scientific literature by summarizing the current knowledge of how isotopes have been applied to key marine symbioses to unravel nutrient exchanges between partners, and by describing the difficulties in interpreting the isotopic signal. This review also focuses on the use of compound-specific stable isotope analysis and on statistical advances to analyze stable isotope data. It also highlights the knowledge gaps that would benefit from future research.

9.
Ecology ; 100(8): e02744, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31135996

RESUMO

Parasites can shape the structure and function of ecosystems by influencing both the density and traits of their hosts. Such changes in ecosystems are particularly likely when the host is a predator that mediates the dynamics of trophic cascades. Here, we experimentally tested how parasite load of a small predatory fish, the threespine stickleback, can affect the occurrence and strength of trophic cascades and ecosystem functioning. In a factorial mesocosm experiment, we manipulated the density of stickleback (low vs. high), and the level of parasite load (natural vs. reduced). In addition, we used two stickleback populations from different lineages: an eastern European lineage with a more pelagic phenotype (Lake Constance) and a western European lineage with a more benthic phenotype (Lake Geneva). We found that stickleback caused trophic cascades in the pelagic but not the benthic food chain. Evidence for pelagic trophic cascades was stronger in treatments where parasite load of stickleback was reduced with an antihelmintic medication, and where fish originated from Lake Constance (i.e., the more pelagic lineage). A structural equation model revealed that differences in stickleback lineage and parasite load were most likely to impact trophic cascades via changes in the composition, rather than overall biomass, of zooplankton communities. Overall, our results provide experimental evidence that parasites of predators can influence the cascading effects of fish on lower trophic levels with consequences on ecosystem functioning.


Assuntos
Parasitos , Smegmamorpha , Animais , Biomassa , Ecossistema , Cadeia Alimentar , Comportamento Predatório
10.
Ecol Evol ; 7(8): 2617-2625, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28428852

RESUMO

Phenotypes can both evolve in response to, and affect, ecosystem change, but few examples of diverging ecosystem-effect traits have been investigated. Bony armor traits of fish are good candidates for this because they evolve rapidly in some freshwater fish populations, and bone is phosphorus rich and likely to affect nutrient recycling in aquatic ecosystems. Here, we explore how ontogeny, rearing environment, and bone allocation among body parts affect the stoichiometric phenotype (i.e., stoichiometric composition of bodies and excretion) of threespine stickleback. We use two populations from distinct freshwater lineages with contrasting lateral plating phenotypes (full vs. low plating) and their hybrids, which are mostly fully plated. We found that ontogeny, rearing environment, and body condition were the most important predictors of organismal stoichiometry. Although elemental composition was similar between both populations and their hybrids, we found significant divergence in phosphorus allocation among body parts and in phosphorus excretion rates. Overall, body armor differences did not explain variation in whole body phosphorus, phosphorus allocation, or phosphorus excretion. Evolutionary divergence between these lineages in both allocation and excretion is likely to have important direct consequences for ecosystems, but may be mediated by evolution of multiple morphological or physiological traits beyond plating phenotype.

11.
Mar Genomics ; 29: 1-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26896098

RESUMO

Notable advances in ecological genomics have been driven by high-throughput sequencing technology and taxonomically broad sequence repositories that allow us to accurately assess species interactions with great taxonomic resolution. The use of DNA as a marker for ingested food is particularly relevant to address predator-prey interactions and disentangle complex marine food webs. DNA-based methods benefit from reductionist molecular approaches to address ecosystem scale processes, such as community structure and energy flow across trophic levels, among others. Here we review how molecular trophic markers have been used to better understand trophic interactions in the marine environment and their advantages and limitations. We focus on animal groups where research has been focused, such as marine mammals, seabirds, fishes, pelagic invertebrates and benthic invertebrates, and use case studies to illustrate how DNA-based methods unraveled food-web interactions. The potential of molecular trophic markers for disentangling the complex trophic ecology of corals is also discussed.


Assuntos
Antozoários/fisiologia , Biomarcadores/análise , Ecologia/métodos , Cadeia Alimentar , Biologia Marinha/métodos , Animais
12.
Trends Biotechnol ; 33(6): 331-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25865857

RESUMO

Market globalization and recurring food safety alerts have resulted in a growing consumer awareness of the need for food traceability. This is particularly relevant for seafood due to its perishable nature and importance as a key protein source for the population of the world. Here, we provide an overview of the current needs for seafood origin traceability, along with the limitations and challenges for its implementation. We focus on geochemical, biochemical, and molecular tools and how they should be optimized to be implemented globally and to address our societal needs. We suggest that seafood traceability is key to enforcing food safety regulations and fisheries control, combat fraud, and fulfill present and future expectations of conscientious producers, consumers, and authorities.


Assuntos
Biotecnologia/métodos , Inocuidade dos Alimentos , Alimentos Marinhos/análise , Certificação , Humanos , Alimentos Marinhos/normas
13.
PLoS One ; 7(1): e30580, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22276216

RESUMO

It is acknowledged that marine invertebrates produce bioactive natural products that may be useful for developing new drugs. By exploring untapped geographical sources and/or novel groups of organisms one can maximize the search for new marine drugs to treat human diseases. The goal of this paper is to analyse the trends associated with the discovery of new marine natural products from invertebrates (NMNPI) over the last two decades. The analysis considers different taxonomical levels and geographical approaches of bioprospected species. Additionally, this research is also directed to provide new insights into less bioprospected taxa and world regions. In order to gather the information available on NMNPI, the yearly-published reviews of Marine Natural Products covering 1990-2009 were surveyed. Information on source organisms, specifically taxonomical information and collection sites, was assembled together with additional geographical information collected from the articles originally describing the new natural product. Almost 10000 NMNPI were discovered since 1990, with a pronounced increase between decades. Porifera and Cnidaria were the two dominant sources of NMNPI worldwide. The exception was polar regions where Echinodermata dominated. The majority of species that yielded the new natural products belong to only one class of each Porifera and Cnidaria phyla (Demospongiae and Anthozoa, respectively). Increased bioprospecting efforts were observed in the Pacific Ocean, particularly in Asian countries that are associated with the Japan Biodiversity Hotspot and the Kuroshio Current. Although results show comparably less NMNPI from polar regions, the number of new natural products per species is similar to that recorded for other regions. The present study provides information to future bioprospecting efforts addressing previously unexplored taxonomic groups and/or regions. We also highlight how marine invertebrates, which in some cases have no commercial value, may become highly valuable in the ongoing search for new drugs from the sea.


Assuntos
Produtos Biológicos/classificação , Invertebrados/classificação , Animais , Organismos Aquáticos/classificação , Biologia Marinha , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA