Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289661

RESUMO

During the UK 2020-2021 epizootic of H5Nx clade 2.3.4.4b high-pathogenicity avian influenza viruses (HPAIVs), high mortality occurred during incursions in commercially farmed common pheasants (Phasianus colchicus). Two pheasant farms, affected separately by H5N8 and H5N1 subtypes, included adjacently housed red-legged partridges (Alectoris rufa), which appeared to be unaffected. Despite extensive ongoing epizootics, H5Nx HPAIV partridge outbreaks were not reported during 2020-2021 and 2021-2022 in the UK, so it is postulated that partridges are more resistant to HPAIV infection than other gamebirds. To assess this, pathogenesis and both intra- and inter-species transmission of UK pheasant-origin H5N8-2021 and H5N1-2021 HPAIVs were investigated. Onward transmission to chickens was also assessed to better understand the risk of spread from gamebirds to other commercial poultry sectors. A lower infectious dose was required to infect pheasants with H5N8-2021 compared to H5N1-2021. However, HPAIV systemic dissemination to multiple organs within pheasants was more rapid following infection with H5N1-2021 than H5N8-2021, with the former attaining generally higher viral RNA levels in tissues. Intraspecies transmission to contact pheasants was successful for both viruses and associated with viral environmental contamination, while interspecies transmission to a first chicken-contact group was also efficient. However, further onward transmission to additional chicken contacts was only achieved with H5N1-2021. Intra-partridge transmission was only successful when high-dose H5N1-2021 was administered, while partridges inoculated with H5N8-2021 failed to shed and transmit, although extensive tissue tropism was observed for both viruses. Mortalities among infected partridges featured a longer incubation period compared to that in pheasants, for both viruses. Therefore, the susceptibility of different gamebird species and pathogenicity outcomes to the ongoing H5Nx clade 2.3.4.4b HPAIVs varies, but pheasants represent a greater likelihood of H5Nx HPAIV introduction into galliforme poultry settings. Consequently, viral maintenance within gamebird populations and risks to poultry species warrant enhanced investigation.


Assuntos
Galliformes , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Animais , Virulência , Galinhas
2.
Vet Res ; 55(1): 89, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010163

RESUMO

Since the reintroduction of African swine fever virus (ASFV) in Europe in 2007 and its subsequent spread to Asia, wild boar has played a crucial role in maintaining and disseminating the virus. There are significant gaps in the knowledge regarding infection dynamics and disease pathogenesis in domestic pigs and wild boar, particularly at the early infection stage. We aimed to compare domestic pigs and wild boar infected intranasally to mimic natural infection with one of the original highly virulent genotype II ASFV isolates (Armenia 2007). The study involved euthanising three domestic pigs and three wild boar on days 1, 2, 3, and 5 post-infection, while four domestic pigs and four wild boar were monitored until they reached a humane endpoint. The parameters assessed included clinical signs, macroscopic lesions, viremia levels, tissue viral load, and virus shedding in nasal and rectal swabs from day 1 post-infection. Compared with domestic pigs, wild boar were more susceptible to ASFV, with a shorter incubation period and earlier onset of clinical signs. While wild boar reached a humane endpoint earlier than domestic pigs did, the macroscopic lesions were comparatively less severe. In addition, wild boar had earlier viremia, and the virus was also detected earlier in tissues. The medial retropharyngeal lymph nodes were identified as key portals for ASFV infection in both subspecies. No viral genome was detected in nasal or rectal swabs until shortly before reaching the humane endpoint in both domestic pigs and wild boar, suggesting limited virus shedding in acute infections.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Genótipo , Sus scrofa , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Suínos , Eliminação de Partículas Virais , Viremia/veterinária , Viremia/virologia , Carga Viral/veterinária , Virulência
3.
Vet Pathol ; 61(3): 421-431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38140946

RESUMO

The reemergence of the highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in the United Kingdom in 2021-2022 has caused unprecedented epizootic events in wild birds and poultry. During the summer of 2022, there was a shift in virus transmission dynamics resulting in increased HPAIV infection in seabirds, and consequently, a profound impact on seabird populations. To understand the pathological impact of HPAIV in seabirds, we evaluated the virus antigen distribution and associated pathological changes in the tissues of great skua (Stercorarius skua, n = 8), long-tailed skua (Stercorarius longicaudus, n = 1), European herring gull (Larus argentatus, n = 5), and black-headed gull (Chroicocephalus ridibundus, n = 4), which succumbed to natural infection of HPAIV during the summer of 2022. Cases were collected from Shetland, including Scatness (mainland), No Ness (mainland), Clumlie (mainland), Hermaness (island), Fair Isle (island), Noss (island), and the West Midlands, South East, and South West of England. Grossly, gizzard ulceration was observed in one great skua and pancreatic necrosis was observed in 4 herring gulls, with intralesional viral antigen detected subsequently. Microscopical analysis revealed neuro-, pneumo-, lymphoid-, and cardiomyotropism of HPAIV H5N1, with the most common virus-associated pathological changes being pancreatic and splenic necrosis. Examination of the reproductive tract of the great skua revealed HPAIV-associated oophoritis and salpingitis, and virus replication within the oviductal epithelium. The emergence of HPAIV in seabirds Stercorariidae and Laridae, particularly during summer 2022, has challenged the dogma of HPAIV dynamics, posing a significant threat to wild bird life with potential implications for the reproductive performance of seabirds of conservation importance.


Assuntos
Charadriiformes , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Charadriiformes/virologia , Influenza Aviária/virologia , Influenza Aviária/patologia , Influenza Aviária/epidemiologia , Reino Unido/epidemiologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Feminino
4.
Vaccine ; 42(3): 653-661, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38143198

RESUMO

Although commercial vaccines against Newcastle Disease have been available for decades, outbreaks still occur in the face of vaccination Further vaccination may accelerate viral evolution resulting in a further reduction in vaccine efficacy. A key question is whether genotype-matched vaccines can confer better protection against contemporary type 1 Avian Paramyxoviruses. To assess this, an in vivo vaccine-challenge study was undertaken to assess protection afforded by 'genotype-matched' and commercial vaccine formulations. Groups of chickens were vaccinated twice (prime-boost) with an inactivated preparation of either La Sota Clone 30, AV632-chicken-Cyprus-13 (genotype VII.2), or mock vaccine, and later challenged with virulent AV632-chicken-Cyprus-13. Post vaccinal serological responses differed, although both vaccination/challenge groups showed similar levels of clinical protection compared to the unvaccinated group, where 100 % mortality was observed. Shedding was significantly reduced in the vaccinated groups compared to the unvaccinated group. Virus dissemination in the tissues of vaccinated birds was comparable, but onset of infection was delayed. Two mutations were observed in the HN gene of the heterologous vaccine group; H199N and I192M, the latter thought to be associated with increased fusogenic potential. These data demonstrate that existing vaccine formulations confer similar levels of clinical protection to contemporary strains and that the antigenic heterogeneity of circulating strains does not impact upon shedding profiles in immunised birds. In conclusion, the ability of virulent APMV-1 to cause disease in vaccinated flocks is unlikely to be the result of antigenic mismatch alone, and other factors likely contribute to vaccination failure and breakthrough.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Vírus da Doença de Newcastle/genética , Doença de Newcastle/prevenção & controle , Vacinação/veterinária , Genótipo , Projetos de Pesquisa , Eliminação de Partículas Virais , Anticorpos Antivirais , Doenças das Aves Domésticas/prevenção & controle
5.
Viruses ; 16(4)2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675958

RESUMO

Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo animals in Great Britain and Jersey were tested by APHA for SARS-CoV-2 during 2020-2023. One domestic cat (Felis catus), three domestic dogs (Canis lupus familiaris), and three Amur tigers (Panthera tigris altaica) from a zoo were confirmed positive during 2020-2021 and reported to the WOAH. All seven positive animals were linked with known SARS-CoV-2 positive human contacts. Characterisation of the SARS-CoV-2 variants by genome sequencing indicated that the cat was infected with an early SARS-CoV-2 lineage. The three dogs and three tigers were infected with the SARS-CoV-2 Delta variant of concern (B.1.617.2). The role of non-human species in the onward transmission and emergence of new variants of SARS-CoV-2 remain poorly defined. Continued surveillance of SARS-CoV-2 in relevant domestic and captive animal species with high levels of human contact is important to monitor transmission at the human-animal interface and to assess their role as potential animal reservoirs.


Assuntos
Animais de Zoológico , COVID-19 , SARS-CoV-2 , Tigres , Animais , Cães , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/classificação , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/veterinária , COVID-19/virologia , Tigres/virologia , Gatos , Animais de Zoológico/virologia , Inglaterra/epidemiologia , Humanos , Filogenia , Doenças do Cão/virologia , Doenças do Cão/epidemiologia , Doenças do Cão/transmissão , Zoonoses/virologia , Zoonoses/transmissão , Zoonoses/epidemiologia
6.
Emerg Microbes Infect ; 13(1): 2348521, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38686548

RESUMO

A free-range organic broiler (Gallus gallus domesticus) premises in Staffordshire was infected by high pathogenicity avian influenza virus (HPAIV) H5N8 during the 2020-2021 epizootic in the United Kingdom (UK). Following initial confirmation of the infection in poultry, multiple wild bird species were seen scavenging on chicken carcasses. Detected dead wild birds were subsequently demonstrated to have been infected and succumbed to HPAIV H5N8. Initially, scavenging species, magpie (Pica pica) and raven (Corvus corax) were found dead on the premises but over the following days, buzzards (Buteo buteo) were also found dead within the local area with positive detection of HPAIV in submitted carcasses. The subacute nature of microscopic lesions within a buzzard was consistent with the timeframe of infection. Finally, a considerable number of free-living pheasants (Phasianus colchicus) were also found dead in the surrounding area, with carcasses having higher viral antigen loads compared to infected chickens. Limited virus dissemination was observed in the carcasses of the magpie, raven, and buzzard. Further, an avirulent avian paramyxovirus type 1 (APMV-1) was detected within poultry samples as well as in the viscera of a magpie infected with HPAIV. Immunohistochemistry did not reveal colocalization of avian paramyxovirus antigens with lesions, supporting an avirulent APMV-1 infection. Overall, this case highlights scenarios in which bi-directional transmission of avian viral diseases between commercial and wild bird species may occur. It also underlines the importance of bio separation and reduced access when infection pressure from HPAIV is high.


Assuntos
Animais Selvagens , Galinhas , Surtos de Doenças , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Galinhas/virologia , Animais Selvagens/virologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Vírus da Influenza A Subtipo H5N8/genética , Reino Unido/epidemiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/epidemiologia , Aves Domésticas/virologia , Corvos/virologia , Aves/virologia
7.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066308

RESUMO

In January 2020, increased mortality was reported in a small broiler breeder flock in County Fermanagh, Northern Ireland. Gross pathological findings included coelomitis, oophoritis, salpingitis, visceral gout, splenomegaly, and renomegaly. Clinical presentation included inappetence, pronounced diarrhoea, and increased egg deformation. These signs, in combination with increased mortality, triggered a notifiable avian disease investigation. High pathogenicity avian influenza virus (HPAIV) was not suspected, as mortality levels and clinical signs were not consistent with HPAIV. Laboratory investigation demonstrated the causative agent to be a low-pathogenicity avian influenza virus (LPAIV), subtype H6N1, resulting in an outbreak that affected 15 premises in Northern Ireland. The H6N1 virus was also associated with infection on 13 premises in the Republic of Ireland and six in Great Britain. The close genetic relationship between the viruses in Ireland and Northern Ireland suggested a direct causal link whereas those in Great Britain were associated with exposure to a common ancestral virus. Overall, this rapidly spreading outbreak required the culling of over 2 million birds across the United Kingdom and the Republic of Ireland to stamp out the incursion. This report demonstrates the importance of investigating LPAIV outbreaks promptly, given their substantial economic impacts.


Assuntos
Galinhas , Surtos de Doenças , Fazendas , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Aves Domésticas , Animais , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Surtos de Doenças/veterinária , Reino Unido/epidemiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Irlanda/epidemiologia , Galinhas/virologia , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Aves Domésticas/virologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA