Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Skin Pharmacol Physiol ; 36(3): 125-139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36754026

RESUMO

INTRODUCTION: The stratum corneum (SC) matrix is composed of free fatty acids, cholesterol, and ceramides (CERs), which play a key role in the skin barrier function. Changes in the composition and content of skin lipids will affect the function of the skin barrier. The effect of a glycerol/petrolatum-based emollient (G/P-emollient) cream on the lipid profiles of isolated ex vivo human SC and the SC of a reconstructed human epidermis (RHE) model was measured. METHODS: The spatial organization of the cream and the isolated SC intercellular matrix were studied using X-ray diffraction. The inter-bilayer distances in the multi-lamellar lipid structures and lattice type were analyzed using small-angle X-ray scattering and wide-angle X-ray scattering (WAXS), respectively. Lipidomic analysis using shotgun lipidomics was performed on RHE models to quantify CER classes and chain lengths. This technology enables the analysis of thousands of lipids in a single biological sample. RESULTS: The crystallized components of the cream are lipids, which were mainly packed in orthorhombic lattices, as well as hexagonal lattices and were similar to the SC structure. The cream penetrated the SC but did not alter the WAXS profile. It increased the amount of higher carbon number CERs (>42 carbons) and decreased lower carbon number CERs (<42 carbons). All chain length of CERs and acyl-CER classes (CER EOS, EOH, EOP, EOdS) were increased as the total CER classes. A decrease of the CER C34 for hydroxylated and non-hydroxylated CERs was also observed. The cream altered the S and P CER forms (increased the NP/NS and AP/AS ratios), indicating it could reduce the relative feedback mechanism observed in inflammatory pathologies, for example, atopic dermatitis. The cream increased CER NP, which is decreased in dry skin. CONCLUSION: G/P-emollient cream may be beneficial for skin pathologies by modifying SC lipids, balancing CER levels and ratios, and improving the barrier function. Importantly, the cream structure mimics that of the SC and penetrated the lower SC layers without compromising its lamellar structure.


Assuntos
Emolientes , Lipidômica , Humanos , Emolientes/farmacologia , Lipídeos/química , Pele/química , Epiderme/química , Ceramidas/química
2.
J Struct Biol ; 214(4): 107908, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265530

RESUMO

Hair thinning occurs during normal chronological aging in women and in men leading to an increased level of thinner hair shafts alongside original thicker shafts. However, the characteristics of age-associated thin hairs remain largely unknown. Here we analyzed these characteristics by comparing at multiscale thin and thick hairs originated from Caucasian women older than 50 years. We observed that the cortex of thick hair contains many K35(+)/K38(-) keratinocytes that decrease in number with decreasing hair diameter. Accordingly, X-ray diffraction revealed differences supporting that thin and thick hairs are different with regards to the nature of the intermediate filaments making up their cortices. In addition, we observed a direct correlation between hair ellipticity and diameter with thin hairs having an unexpected round shape compared to the elliptic shape of thick hairs. We also observed fewer cuticle layers and a reduced frequency of a medullae in thin hairs. Regarding mechanical properties, thin hairs exhibited a surprising increased rigidity, a decrease of the viscosity and a decrease of the water diffusion coefficient. Hence, aged-associated thin hairs exhibit numerous modifications likely due to changes of hair differentiation program as evidenced by the modulations in the expression of hair keratins and keratin-associated proteins and by the X-ray diffraction specters. Hence, hair thinning with age does not consist simply of the production of a smaller hair. It is rather a more profound process likely relying on the implementation of an "aged hair program" that takes place within the hair follicle.


Assuntos
Cabelo , Feminino , Humanos , Idoso
3.
J Struct Biol ; 170(1): 69-75, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19925868

RESUMO

X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds.


Assuntos
Cabelo/efeitos da radiação , Queratinas/efeitos da radiação , Conformação Proteica/efeitos da radiação , Síncrotrons , Adulto , Relação Dose-Resposta à Radiação , Humanos , Masculino , Fatores de Tempo , População Branca
4.
PLoS One ; 8(10): e76361, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098483

RESUMO

Mutations within the human desmin gene are responsible for a subcategory of myofibrillar myopathies called desminopathies. However, a single inherited mutation can produce different phenotypes within a family, suggesting that environmental factors influence disease states. Although several mouse models have been used to investigate organ-specific desminopathies, a more general mechanistic perspective is required to advance our knowledge toward patient treatment. To improve our understanding of disease pathology, we have developed cellular models to observe desmin behaviour in early stages of disease pathology, e.g., upon formation of cytoplasmic desmin aggregates, within an isogenic background. We cloned the wildtype and three mutant desmin cDNAs using a Tet-On Advanced® expression system in C2C12 cells. Mutations were selected based on positioning within desmin and capacity to form aggregates in transient experiments, as follows: DesS46Y (head domain; low aggregation), DesD399Y (central rod domain; high aggregation), and DesS460I (tail domain; moderate aggregation). Introduction of these proteins into a C2C12 background permitted us to compare between desmin variants as well as to determine the role of external stress on aggregation. Three different types of stress, likely encountered during muscle activity, were introduced to the cell models-thermal (heat shock), redox-associated (H2O2 and cadmium chloride), and mechanical (stretching) stresses-after which aggregation was measured. Cells containing variant DesD399Y were more sensitive to stress, leading to marked cytoplasmic perinuclear aggregations. We then evaluated the capacity of biochemical compounds to prevent this aggregation, applying dexamethasone (an inducer of heat shock proteins), fisetin or N-acetyl-L-cysteine (antioxidants) before stress induction. Interestingly, N-acetyl-L-cysteine pre-treatment prevented DesD399Y aggregation during most stress. N-acetyl-L-cysteine has recently been described as a promising antioxidant in myopathies linked to selenoprotein N or ryanodin receptor defects. Our findings indicate that this drug warrants further study in animal models to speed its potential development as a therapy for DesD399Y-linked desminopathies.


Assuntos
Acetilcisteína/metabolismo , Cardiomiopatias/metabolismo , Desmina/metabolismo , Distrofias Musculares/metabolismo , Estresse Fisiológico , Acetilcisteína/farmacologia , Animais , Cardiomiopatias/genética , Linhagem Celular , Códon , Citoesqueleto/genética , Citoesqueleto/metabolismo , Desmina/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Distrofias Musculares/genética , Mutação , Ligação Proteica , Estresse Fisiológico/efeitos dos fármacos
5.
Nano Lett ; 8(9): 2659-63, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18672943

RESUMO

X-ray fluorescence microscopy (microXRF) is applied for the first time to study macrophages exposed to unpurified and purified single-walled (SW) and multiwalled (MW) carbon nanotubes (CNT). Investigating chemical elemental distributions allows one to (i) image nanotube localization within a cell and (ii) detect chemical modification of the cell after CNT internalization. An excess of calcium is detected for cells exposed to unpurified SWCNT and MWCNT and related toxicological assays are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA