Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; : e14368, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225250

RESUMO

Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in a 3-dimensional (3D) ocean where deep-sea features such as seamounts have been seldom studied mostly due to challenging methodologies to implement at great depths. Yet, the use of emerging technologies, such as environmental DNA combined with modern modeling frameworks, could help address the problem. We collected environmental DNA, echosounder acoustic, and video data at 15 seamounts and deep island slopes across the Coral Sea. We modeled 7 fish community metrics and the abundances of 45 individual species and molecular operational taxonomic units (MOTUs) in benthic and pelagic waters (down to 600-m deep) with boosted regression trees and generalized joint attribute models to describe biodiversity on seamounts and deep slopes and identify 3D protection solutions for achieving the CBD area target in New Caledonia (1.4 million km2). We prioritized the identified conservation units in a 3D space, based on various biodiversity targets, to meet the goal of protecting at least 30% of the spatial domain, with a focus on areas with high biodiversity. The relationship between biodiversity protection targets and the spatial area protected by the solution was linear. The scenario protecting 30% of each biodiversity metric preserved almost 30% of the considered spatial domain and accounted for the 3D distribution of biodiversity. Our study paves the way for the use of combined data collection methodologies to improve biodiversity estimates in 3D structured marine environments for the selection of conservation areas and for the use of biodiversity targets to achieve area-based international targets.


Planeación tridimensional de la conservación de las medidas de biodiversidad de peces para lograr el objetivo de conservación 30x30 de mar profundo Resumen El impacto antropogénico y el cambio ambiental acelerados afectan gravemente a la biodiversidad marina y aumentan la urgencia de aplicar el plan 30x30 del Convenio sobre la Diversidad Biológica (CDB) para conservar el 30% de las zonas marinas para el 2030. Sin embargo, la identificación de objetivos de conservación basados en zonas es compleja en un océano tridimensional (3D) en el que rara vez se han estudiado las características de las profundidades marinas, como los montes marinos, sobre todo por la dificultad de aplicar metodologías a grandes profundidades. No obstante, el uso de tecnologías emergentes, como el ADN ambiental combinado con marcos actuales de modelación, podría ayudar a resolver el problema. Recopilamos datos de ADN ambiental, acústica de ecosonda y video en 15 montes marinos y taludes de islas profundas del mar del Coral. Modelamos siete medidas de comunidades de peces y 45 abundancias de especies individuales y unidades taxonómicas moleculares (UTOM) en aguas bentónicas y pelágicas (hasta 600 m de profundidad) con árboles de regresión reforzada (ARR) y modelos de atributos conjuntos generalizados (MACJ) para describir la biodiversidad en los montes marinos y taludes profundos e identificar soluciones de protección en 3D para alcanzar el objetivo de área del CDB en Nueva Caledonia (1.4 millones de km2). Priorizamos las unidades de conservación identificadas en un espacio 3D con base en varios objetivos de biodiversidad para cumplir el objetivo de proteger al menos el 30% del dominio espacial con un enfoque en las zonas con una gran biodiversidad. La relación entre los objetivos de protección de la biodiversidad y el área espacial protegida por la solución fue lineal. El escenario que protegía el 30% de cada medida de biodiversidad preservó casi el 30% del dominio espacial considerado y consideró la distribución tridimensional de la biodiversidad. Nuestro estudio prepara el camino para el uso de metodologías combinadas de recopilación de datos con el fin de mejorar las estimaciones de biodiversidad en entornos marinos estructurados en 3D para la selección de áreas de conservación y para el uso de objetivos de biodiversidad con el fin de alcanzar objetivos internacionales basados en áreas.

2.
Mol Ecol ; 30(8): 1892-1906, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33619812

RESUMO

Anomalous heat waves are causing a major decline of hard corals around the world and threatening the persistence of coral reefs. There are, however, reefs that have been exposed to recurrent thermal stress over the years and whose corals appear to have been tolerant against heat. One of the mechanisms that could explain this phenomenon is local adaptation, but the underlying molecular mechanisms are poorly known. In this work, we applied a seascape genomics approach to study heat stress adaptation in three coral species of New Caledonia (southwestern Pacific) and to uncover the molecular actors potentially involved. We used remote sensing data to characterize the environmental trends across the reef system, and sampled corals living at the most contrasted sites. These samples underwent next generation sequencing to reveal single nucleotide polymorphisms (SNPs), frequencies of which were associated with heat stress gradients. As these SNPs might underpin an adaptive role, we characterized the functional roles of the genes located in their genomic region. In each of the studied species, we found heat stress-associated SNPs located in proximity of genes involved in pathways well known to contribute to the cellular responses against heat, such as protein folding, oxidative stress homeostasis, inflammatory and apoptotic pathways, and DNA damage-repair. In some cases, the same candidate molecular targets of heat stress adaptation recurred among species. Together, these results underline the relevance and the power of the seascape genomics approach for the discovery of adaptive traits that could allow corals to persist across wider thermal ranges.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Genômica , Resposta ao Choque Térmico/genética , Nova Caledônia
3.
Oecologia ; 180(1): 11-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26080759

RESUMO

Marine organisms are under threat globally from a suite of anthropogenic sources, but the current emphasis on global climate change has deflected the focus from local impacts. While the effect of increased sedimentation on the settlement of coral species is well studied, little is known about the impact on larval fish. Here, the effect of a laterite "red soil" sediment pollutant on settlement behaviour and post-settlement performance of reef fish was tested. In aquarium tests that isolated sensory cues, we found significant olfaction-based avoidance behaviour and disruption of visual cue use in settlement-stage larval fish at 50 mg L(-1), a concentration regularly exceeded in situ during rain events. In situ light trap catches showed lower abundance and species richness in the presence of red soil, but were not significantly different due to high variance in the data. Prolonged exposure to red soil produced altered olfactory cue responses, whereby fish in red soil made a likely maladaptive choice for dead coral compared to controls where fish chose live coral. Other significant effects of prolonged exposure included decreased feeding rates and body condition. These effects on fish larvae reared over 5 days occurred in the presence of a minor drop in pH and may be due to the chemical influence of the sediment. Our results show that sediment pollution of coral reefs may have more complex effects on the ability of larval fish to successfully locate suitable habitat than previously thought, as well as impacting on their post-settlement performance and, ultimately, recruitment success.


Assuntos
Antozoários , Comportamento Animal , Recifes de Corais , Sinais (Psicologia) , Poluição Ambiental , Peixes/fisiologia , Solo , Animais , Concentração de Íons de Hidrogênio , Larva , Luz , Odorantes , Percepção Olfatória , Chuva , Percepção Visual
4.
Planta Med ; 82(11-12): 961-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27280931

RESUMO

Oil from the nuts of Calophyllum inophyllum, locally called "Tamanu oil" in French Polynesia, was traditionally used for wound healing and to cure various skin problems and ailments. The skin-active effect of "Tamanu oil emulsion" was investigated on human skin cells (keratinocytes and dermal fibroblasts) and showed cell proliferation, glycosaminoglycan and collagen production, and wound healing activity. Transcriptomic analysis of the treated cells revealed gene expression modulation including genes involved in the metabolic process implied in O-glycan biosynthesis, cell adhesion, and cell proliferation. The presence of neoflavonoids as bioactive constituents in Tamanu oil emulsion may contribute to these biological activities. Altogether, consistent data related to targeted histological and cellular functions brought new highlights on the mechanisms involved in these biological processes induced by Tamanu oil effects in skin cells.


Assuntos
Calophyllum/química , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Pele/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Transformada , Colágeno/biossíntese , Glicosaminoglicanos/metabolismo , Queratinócitos/efeitos dos fármacos , Pele/citologia , Cicatrização/efeitos dos fármacos
5.
Brain Behav Evol ; 83(1): 17-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24401605

RESUMO

In coral reefs, one of the great mysteries of teleost fish ecology is how larvae locate the relatively rare patches of habitat to which they recruit. The recruitment of fish larvae to a reef, after a pelagic phase lasting between 10 and 120 days, depends strongly on larval ability to swim and detect predators, prey and suitable habitat via sensory cues. However, no information is available about the relationship between brain organization in fish larvae and their sensory and swimming abilities at recruitment. For the first time, we explore the structural diversity of brain organization (comparative sizes of brain subdivisions: telencephalon, mesencephalon, cerebellum, vagal lobe and inferior lobe) among larvae of 25 coral reef fish species. We then investigate links between variation in brain organization and life history traits (swimming ability, pelagic larval duration, social behavior, diel activity and cue use relying on sensory perception). After accounting for phylogeny with independent contrasts, we found that brain organization covaried with some life history traits: (1) fish larvae with good swimming ability (>20 cm/s), a long pelagic duration (>30 days), diurnal activity and strong use of cues relying on sensory perception for detection of recruitment habitat had a larger cerebellum than other species. (2) Fish larvae with a short pelagic duration (<30 days) and nocturnal activity had a larger mesencephalon and telencephalon. Lastly, (3) fish larvae exhibiting solitary behavior during their oceanic phase had larger inferior and vagal lobes. Overall, we hypothesize that a well-developed cerebellum may allow fish larvae to improve their chances of successful recruitment after a long pelagic phase in the ocean. Our study is the first one to bring together quantitative information on brain organization and the relative development of major brain subdivisions across coral reef fish larvae, and more specifically to address the way in which this variation correlates with the recruitment process.


Assuntos
Encéfalo/anatomia & histologia , Recifes de Corais , Peixes/anatomia & histologia , Animais , Encéfalo/crescimento & desenvolvimento , Peixes/classificação , Peixes/crescimento & desenvolvimento , Larva/fisiologia , Filogenia
6.
Biology (Basel) ; 12(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998045

RESUMO

Seamounts are the least known ocean biome. Considered biodiversity hotspots, biomass oases, and refuges for megafauna, large gaps exist in their real diversity relative to other ecosystems like coral reefs. Using environmental DNA metabarcoding (eDNA) and baited video (BRUVS), we compared fish assemblages across five environments of different depths: coral reefs (15 m), shallow seamounts (50 m), continental slopes (150 m), intermediate seamounts (250 m), and deep seamounts (500 m). We modeled assemblages using 12 environmental variables and found depth to be the main driver of fish diversity and biomass, although other variables like human accessibility were important. Boosted Regression Trees (BRT) revealed a strong negative effect of depth on species richness, segregating coral reefs from deep-sea environments. Surprisingly, BRT showed a hump-shaped effect of depth on fish biomass, with significantly lower biomass on coral reefs than in shallowest deep-sea environments. Biomass of large predators like sharks was three times higher on shallow seamounts (50 m) than on coral reefs. The five studied environments showed quite distinct assemblages. However, species shared between coral reefs and deeper-sea environments were dominated by highly mobile large predators. Our results suggest that seamounts are no diversity hotspots for fish. However, we show that shallower seamounts form biomass oases and refuges for threatened megafauna, suggesting that priority should be given to their protection.

7.
Molecules ; 17(10): 12015-22, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23085652

RESUMO

The first phytochemical inspection of the Marquesan endemic plant Rauvolfia nukuhivensis led to the isolation and structure characterization of two new indolo[2,3-a]quinolizinium derivatives named nukuhivensium and N12-methyl-nukuhivensium. They feature an aromatic indolo[2,3-a]quinolizinium core, substituted at C-2 by a n-propyl group, which is unusual in this family of alkaloid derivatives. The structure elucidation was performed on the basis of NMR spectroscopy and especially by interpretation of 2D HMBC correlations. A biosynthetic pathway is proposed on the basis of known enzymatic transformations for this family of natural products. These compounds exhibited low antimicrobial activities.


Assuntos
Quinolizinas/química , Rauwolfia/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Quinolizinas/farmacologia
8.
Cells ; 10(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34685526

RESUMO

Psoriasis is a chronic inflammatory skin disease that is mediated by complex crosstalk between immune cells and keratinocytes (KCs). Emerging studies have showed a specific psoriatic microRNAs signature, in which miR-21 is one of the most upregulated and dynamic miRNAs. In this study, we focused our investigations on the passenger miR-21-3p strand, which is poorly studied in skin and in psoriasis pathogenesis. Here, we showed the upregulation of miR-21-3p in an IMQ-induced psoriasiform mouse model. This upregulation was correlated with IL-22 expression and functionality, both in vitro and in vivo, and it occurred via STAT3 and NF-κB signaling. We identified a network of differentially expressed genes involved in abnormal proliferation control and immune regulatory genes implicated in the molecular pathogenesis of psoriasis in response to miR-21-3p overexpression in KCs. These results were confirmed by functional assays that validated the proliferative potential of miR-21-3p. All these findings highlight the importance of miR-21-3p, an underestimated miRNA, in psoriasis and provide novel molecular targets for therapeutic purposes.


Assuntos
Inflamação/imunologia , Interleucinas/metabolismo , MicroRNAs/genética , Psoríase/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação para Baixo , Queratinócitos/metabolismo , Camundongos , MicroRNAs/metabolismo , Psoríase/tratamento farmacológico , Pele/metabolismo , Ativação Transcricional/imunologia , Regulação para Cima , Interleucina 22
9.
Sci Rep ; 10(1): 19680, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184366

RESUMO

As anomalous heat waves are causing the widespread decline of coral reefs worldwide, there is an urgent need to identify coral populations tolerant to thermal stress. Heat stress adaptive potential is the degree of tolerance expected from evolutionary processes and, for a given reef, depends on the arrival of propagules from reefs exposed to recurrent thermal stress. For this reason, assessing spatial patterns of thermal adaptation and reef connectivity is of paramount importance to inform conservation strategies. In this work, we applied a seascape genomics framework to characterize the spatial patterns of thermal adaptation and connectivity for coral reefs of New Caledonia (Southern Pacific). In this approach, remote sensing of seascape conditions was combined with genomic data from three coral species. For every reef of the region, we computed a probability of heat stress adaptation, and two indices forecasting inbound and outbound connectivity. We then compared our indicators to field survey data, and observed that decrease of coral cover after heat stress was lower at reefs predicted with high probability of adaptation and inbound connectivity. Last, we discussed how these indicators can be used to inform local conservation strategies and preserve the adaptive potential of New Caledonian reefs.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Termotolerância , Animais , Antozoários/genética , Conservação dos Recursos Naturais , Genômica , Aquecimento Global , Nova Caledônia
10.
Evol Appl ; 13(8): 1923-1938, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908595

RESUMO

Coral reefs are suffering a major decline due to the environmental constraints imposed by climate change. Over the last 20 years, three major coral bleaching events occurred in concomitance with anomalous heatwaves, provoking a severe loss of coral cover worldwide. The conservation strategies for preserving reefs, as they are implemented now, cannot cope with global climatic shifts. Consequently, researchers are advocating for preservation networks to be set-up to reinforce coral adaptive potential. However, the main obstacle to this implementation is that studies on coral adaption are usually hard to generalize at the scale of a reef system. Here, we study the relationships between genotype frequencies and environmental characteristics of the sea (seascape genomics), in combination with connectivity analysis, to investigate the adaptive potential of a flagship coral species of the Ryukyu Archipelago (Japan). By associating genotype frequencies with descriptors of historical environmental conditions, we discovered six genomic regions hosting polymorphisms that might promote resistance against heat stress. Remarkably, annotations of genes in these regions were consistent with molecular roles associated with heat responses. Furthermore, we combined information on genetic and spatial distances between reefs to predict connectivity at a regional scale. The combination of these results portrayed the adaptive potential of this population: we were able to identify reefs carrying potential heat stress adapted genotypes and to understand how they disperse to neighbouring reefs. This information was summarized by objective, quantifiable and mappable indices covering the whole region, which can be extremely useful for future prioritization of reefs in conservation planning. This framework is transferable to any coral species on any reef system and therefore represents a valuable tool for empowering preservation efforts dedicated to the protection of coral reefs in warming oceans.

11.
Microbiome ; 8(1): 57, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317019

RESUMO

BACKGROUND: Giant clams and scleractinian (reef-building) corals are keystone species of coral reef ecosystems. The basis of their ecological success is a complex and fine-tuned symbiotic relationship with microbes. While the effect of environmental change on the composition of the coral microbiome has been heavily studied, we know very little about the composition and sensitivity of the microbiome associated with clams. Here, we explore the influence of increasing temperature on the microbial community (bacteria and dinoflagellates from the family Symbiodiniaceae) harbored by giant clams, maintained either in isolation or exposed to other reef species. We created artificial benthic assemblages using two coral species (Pocillopora damicornis and Acropora cytherea) and one giant clam species (Tridacna maxima) and studied the microbial community in the latter using metagenomics. RESULTS: Our results led to three major conclusions. First, the health status of giant clams depended on the composition of the benthic species assemblages. Second, we discovered distinct microbiotypes in the studied T. maxima population, one of which was disproportionately dominated by Vibrionaceae and directly linked to clam mortality. Third, neither the increase in water temperature nor the composition of the benthic assemblage had a significant effect on the composition of the Symbiodiniaceae and bacterial communities of T. maxima. CONCLUSIONS: Altogether, our results suggest that at least three microbiotypes naturally exist in the studied clam populations, regardless of water temperature. These microbiotypes plausibly provide similar functions to the clam host via alternate molecular pathways as well as microbiotype-specific functions. This redundancy in functions among microbiotypes together with their specificities provides hope that giant clam populations can tolerate some levels of environmental variation such as increased temperature. Importantly, the composition of the benthic assemblage could make clams susceptible to infections by Vibrionaceae, especially when water temperature increases. Video abstract.


Assuntos
Antozoários , Bivalves , Recifes de Corais , Código de Barras de DNA Taxonômico , Microbiota , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bivalves/microbiologia , Bivalves/fisiologia , Dinoflagellida/classificação , Dinoflagellida/crescimento & desenvolvimento , Simbiose , Temperatura
12.
Sci Rep ; 10(1): 9922, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555283

RESUMO

Dimethylsulfoniopropionate (DMSP) is a key compound in the marine sulfur cycle, and is produced in large quantities in coral reefs. In addition to Symbiodiniaceae, corals and associated bacteria have recently been shown to play a role in DMSP metabolism. Numerous ecological studies have focused on DMSP concentrations in corals, which led to the hypothesis that increases in DMSP levels might be a general response to stress. Here we used multiple species assemblages of three common Indo-Pacific holobionts, the scleractinian corals Pocillopora damicornis and Acropora cytherea, and the giant clam Tridacna maxima and examined the DMSP concentrations associated with each species within different assemblages and thermal conditions. Results showed that the concentration of DMSP in A. cytherea and T. maxima is modulated according to the complexity of species assemblages. To determine the potential importance of symbiotic dinoflagellates in DMSP production, we then explored the relative abundance of Symbiodiniaceae clades in relation to DMSP levels using metabarcoding, and found no significant correlation between these factors. Finally, this study also revealed the existence of homologs involved in DMSP production in giant clams, suggesting for the first time that, like corals, they may also contribute to DMSP production. Taken together, our results demonstrated that corals and giant clams play important roles in the sulfur cycle. Because DMSP production varies in response to specific species-environment interactions, this study offers new perspectives for future global sulfur cycling research.


Assuntos
Antozoários/metabolismo , Bivalves/metabolismo , Recifes de Corais , Compostos de Sulfônio/metabolismo , Enxofre/metabolismo , Simbiose , Animais
13.
Mar Environ Res ; 162: 105164, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33099079

RESUMO

Outbreaks of the coral-eating crown-of-thorns starfish Acanthaster spp. (COTS) have become to be amongst the most severe threats to coral reefs worldwide. Although most research has focused on COTS early development, it remains unclear how COTS populations will keep pace with changing ocean conditions. Since reproduction is a key process contributing to outbreaks, we investigated the reproductive success of adult COTS acclimated for 3-4 months to different treatment combinations of ambient conditions, ocean warming (+2 °C) and acidification (-0.35 pH). Our results suggest that the optimal breeding season in New Caledonia is concentrated around the end of the calendar year, when water temperature reaches >26 °C. We found negative effects of temperature on egg metrics, fertilisation success, and GSI, conflicting with previously documented effects of temperature on echinoderm reproductive outputs. Fertilisation success dropped drastically (more than threefold) with elevated temperature during the late breeding season. In contrast, we detected no effects of near-future acidification conditions on fertilisation success nor GSI. This is the first time that COTS reproduction is compared among individuals acclimated to different conditions of warming and acidification. Our results highlight the importance of accounting for adult exposure to better understand how COTS reproduction may be impacted in the face of global change.


Assuntos
Antozoários , Animais , Recifes de Corais , Humanos , Concentração de Íons de Hidrogênio , Nova Caledônia , Oceanos e Mares , Estrelas-do-Mar , Temperatura
14.
Sci Rep ; 9(1): 4132, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858525

RESUMO

Rauvolfia nukuhivensis is a well-known plant used for its wide range of beneficial effects in Marquesas islands. It is made up of diverse indole alkaloids and is used as traditional medicine for skin application. The actual mechanism behind the virtue of this plant is still unknown. Hence, in this study we aimed at deciphering the impact of R. nukuhivensis on skin immune system in context of (1) homeostasis, (2) pathogen infection and (3) inflammation. Here we show that R. nukuhivensis enhances cellular metabolic activity and wound healing without inducing cellular stress or disturbing cellular homeostasis. It reinforces the epithelial barrier by up-regulating hBD-1. Nevertheless, in pathogenic stress, R. nukuhivensis acts by preparing the immune system to be reactive and effective directly. Indeed, it enhances the innate immune response by increasing pathogens sensors such as TLR5. Finally, R. nukuhivensis blocks IL-22 induced hyperproliferation via PTEN and Filaggrin up-regulation as well as BCL-2 downregulation. In conclusion, this study provides evidence on the several cutaneous application potentials of R. nukuhivensis such as boosting the immune response or in restoring the integrity of the epithelial barrier.


Assuntos
Anti-Inflamatórios/farmacologia , Interleucinas/metabolismo , Queratinócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rauwolfia/química , Pele/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Proteínas Filagrinas , Humanos , Interleucinas/genética , Queratinócitos/imunologia , Queratinócitos/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Pele/citologia , Pele/imunologia , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Interleucina 22
15.
Sci Rep ; 9(1): 7921, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138834

RESUMO

One of the mechanisms of rapid adaptation or acclimatization to environmental changes in corals is through the dynamics of the composition of their associated endosymbiotic Symbiodiniaceae community. The various species of these dinoflagellates are characterized by different biological properties, some of which can confer stress tolerance to the coral host. Compelling evidence indicates that the corals' Symbiodiniaceae community can change via shuffling and/or switching but the ecological relevance and the governance of these processes remain elusive. Using a qPCR approach to follow the dynamics of Symbiodiniaceae genera in tagged colonies of three coral species over a 10-18 month period, we detected putative genus-level switching of algal symbionts, with coral species-specific rates of occurrence. However, the dynamics of the corals' Symbiodiniaceae community composition was not driven by environmental parameters. On the contrary, putative shuffling event were observed in two coral species during anomalous seawater temperatures and nutrient concentrations. Most notably, our results reveal that a suit of permanent Symbiodiniaceae genera is maintained in each colony in a specific range of quantities, giving a unique 'Symbiodiniaceae signature' to the host. This individual signature, together with sporadic symbiont switching may account for the intra-specific differences in resistance and resilience observed during environmental anomalies.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/fisiologia , Simbiose , Aclimatação , Animais , Antozoários/genética , Biodiversidade , DNA/genética , Dinoflagellida/genética , Polinésia , Água do Mar/química , Especificidade da Espécie , Temperatura
16.
PeerJ ; 7: e6898, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139503

RESUMO

High-throughput sequencing is revolutionizing our ability to comprehensively characterize free-living and symbiotic Symbiodiniaceae, a diverse dinoflagellate group that plays a critical role in coral reef ecosystems. Most studies however, focus on a single marker for metabarcoding Symbiodiniaceae, potentially missing important ecological traits that a combination of markers may capture. In this proof-of-concept study, we used a small set of symbiotic giant clam (Tridacna maxima) samples obtained from nine French Polynesian locations and tested a dual-index sequence library preparation method that pools and simultaneously sequences multiple Symbiodiniaceae gene amplicons per sample for in-depth biodiversity assessments. The rationale for this approach was to allow the metabarcoding of multiple genes without extra costs associated with additional single amplicon dual indexing and library preparations. Our results showed that the technique effectively recovered very similar proportions of sequence reads and dominant Symbiodiniaceae clades among the three pooled gene amplicons investigated per sample, and captured varying levels of phylogenetic resolution enabling a more comprehensive assessment of the diversity present. The pooled Symbiodiniaceae multi-gene metabarcoding approach described here is readily scalable, offering considerable analytical cost savings while providing sufficient phylogenetic information and sequence coverage.

17.
Food Environ Virol ; 11(1): 52-64, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30426392

RESUMO

Lack of wastewater treatment efficiency causes receiving seawaters and bivalve molluscan shellfish to become contaminated, which can lead to public health issues. Six wastewater samples, five seawater samples and three batches of giant clams from Tahiti (French Polynesia) were investigated for the presence of enteric viruses, but also if present, for the diversity, infectivity and integrity of human adenoviruses (HAdV). Enteroviruses (EV), sapoviruses (SaV) and human polyomaviruses (HPyV) were detected in all wastewater samples. In decreasing frequency, noroviruses (NoV) GII and HAdV, rotaviruses (RoV), astroviruses (AsV), NoV GI and finally hepatitis E viruses (HEV) were also observed. Nine types of infectious HAdV were identified. HPyV and EV were found in 80% of seawater samples, NoV GII in 60%, HAdV and SaV in 40% and AsV and RoV in 20%. NoV GI and HEV were not detected in seawater. Intact and infectious HAdV-41 were detected in one of the two seawater samples that gave a positive qPCR result. Hepatitis A viruses were never detected in any water types. Analysis of transcriptomic data from giant clams revealed homologues of fucosyltransferases (FUT genes) involved in ligand biosynthesis that strongly bind to certain NoV strains, supporting the giant clams ability to bioaccumulate NoV. This was confirmed by the presence of NoV GII in one of the three batches of giant clams placed in a contaminated marine area. Overall, all sample types were positive for at least one type of virus, some of which were infectious and therefore likely to cause public health concerns.


Assuntos
Bivalves/virologia , Água do Mar/virologia , Vírus/isolamento & purificação , Águas Residuárias/virologia , Animais , Reação em Cadeia da Polimerase , Polinésia , Alimentos Marinhos/virologia , Vírus/genética
18.
PeerJ ; 7: e6896, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198623

RESUMO

BACKGROUND: Different parts of the tree Calophyllum inophyllum L. (nuts, leaves, roots, bark, fruits, nut oil and resin) are used as traditional medicines and cosmetics in most of the Pacific Islands. The oil efficiency as a natural cure and in traditional cosmetics has been largely described throughout the South Pacific, which led us to investigate C. inophyllum's chemical and genetic diversity. A correlative study of the nut resin and leaf DNA from three distinct archipelagos in the South Pacific was carried out in order to identify diversity patterns in C. inophyllum across the South Pacific. METHODS: Calophyllum inophyllum plants were sampled from French Polynesia, New Caledonia and Fiji. We extracted tamanu oil (nut oil) resin for chemo-diversity studies and sampled leaf tissues for genetic studies. We applied an analysis method designed for small quantities (at a microscale level), and used High Performance Liquid Chromatography (HPLC) to establish the chemo-diversity of tamanu oil resin. In-house standards were co-eluted for qualitative determination. Genetic diversity was assessed using chloroplast barcoding markers (the Acetyl-CoA carboxylase (accD) gene and the psaA-ycf3 intergenic spacer region). RESULTS: Our HPLC analysis revealed 11 previously known tamanu oil constituents, with variability among plant samples. We also isolated and characterized two new neoflavonoids from tamanu oil resin namely, tamanolide E1 and E2 which are diastereoisomers. Although genetic analysis revealed low genetic variation, our multivariate analysis (PCA) of the tamanu oil resin chemical profiles revealed differentiation among geographic regions. CONCLUSION: We showed here that chromatographic analysis using formalized in-house standards of oil resin compounds for co-elution studies against oil resin samples could identify patterns of variation among samples of C. inophyllum, and discriminate samples from different geographical origins.

19.
Sci Rep ; 9(1): 2675, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804382

RESUMO

To prevent the settlement and/or the growth of fouling organisms (i.e. bacteria, fungi or microalgae), benthic sessile species have developed various defense mechanisms among which the production of chemical molecules. While studies have mostly focused on the release of chemical compounds by single species, there exist limited data on multi-species assemblages. We used an integrative approach to explore the potential interactive effects of distinct assemblages of two corals species and one giant clam species on biofouling appearance and composition. Remarkably, we found distinct biofouling communities suggesting the importance of benthic sessile assemblages in biofouling control. Moreover, the assemblage of 3 species led to an inhibition of biofouling, likely through a complex of secondary metabolites. Our results highlight that through their different effect on their near environment, species assemblages might be of upmost importance for their survival and therefore, should now be taken into account for sustainable management of coral reefs.


Assuntos
Antozoários/fisiologia , Incrustação Biológica/prevenção & controle , Bivalves/fisiologia , Recifes de Corais , Animais , Antozoários/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bivalves/metabolismo , Conservação dos Recursos Naturais/métodos , Ecossistema , Fungos/classificação , Fungos/crescimento & desenvolvimento , Microalgas/classificação , Microalgas/crescimento & desenvolvimento
20.
Cancer Res ; 66(18): 9143-52, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16982757

RESUMO

Mitochondrial membrane permeabilization (MMP) is a rate-limiting step of apoptosis, including in anticancer chemotherapy. Adenine nucleotide translocase (ANT) mediates the exchange of ADP and ATP on the inner mitochondrial membrane in healthy cells. In addition, ANT can cooperate with Bax to form a lethal pore during apoptosis. Humans possess four distinct ANT isoforms, encoded by four genes, whose transcription depends on the cell type, developmental stage, cell proliferation, and hormone status. Here, we show that the ANT2 gene is up-regulated in several hormone-dependent cancers. Knockdown of ANT2 by RNA interference induced no major changes in the aspect of the mitochondrial network or cell cycle but provoked minor increase in mitochondrial transmembrane potential and reactive oxygen species level and reduced intracellular ATP concentration without affecting glycolysis. At expression and functional levels, ANT2 depletion was not compensated by other ANT isoforms. Most importantly, ANT2, but not ANT1, silencing facilitated MMP induction by lonidamine, a mitochondrion-targeted antitumor compound already used in clinical studies for breast, ovarian, glioma, and lung cancer as well as prostate adenoma. The combination of ANT2 knockdown with lonidamine induced apoptosis irrespective of the Bcl-2 status. These data identify ANT2 as an endogenous inhibitor of MMP and suggest that its selective inhibition could constitute a promising strategy of chemosensitization.


Assuntos
Translocador 2 do Nucleotídeo Adenina/genética , Translocador 2 do Nucleotídeo Adenina/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Indazóis/farmacologia , Translocador 1 do Nucleotídeo Adenina/biossíntese , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Translocador 2 do Nucleotídeo Adenina/biossíntese , Translocador 2 do Nucleotídeo Adenina/deficiência , Trifosfato de Adenosina/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , Células HeLa , Humanos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , Permeabilidade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA