Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biol ; 5(7): 1621-9, 1985 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-2991745

RESUMO

Twelve clones of monkey DNA obtained by a procedure that enriches 10(3)- to 10(4)-fold for nascent sequences activated early in S phase (G. Kaufmann, M. Zannis-Hadjopoulos, and R. G. Martin, Mol. Cell. Biol. 5:721-727, 1985) have been examined. Only 2 of the 12 ors sequences (origin-enriched sequences) are unique (ors1 and ors8). Three contain the highly reiterated Alu family (ors3, ors9, and ors11). One contains the highly reiterated alpha-satellite family (ors12), but none contain the Kpn family. Those remaining contain middle repetitive sequences. Two examples of the same middle repetitive sequence were found (ors2 and ors6). Three of the middle repetitive sequences (the ors2-ors6 pair, ors5, and ors10) are moderately dispersed; one (ors4) is highly dispersed. The last, ors7, has been mapped to the bona fide replication origin of the D loop of mitochondrial DNA. Of the nine ors sequences tested, half possess snapback (intrachain reannealing) properties.


Assuntos
Replicação do DNA , DNA/genética , Animais , Sequência de Bases , Chlorocebus aethiops , Mapeamento Cromossômico , Enzimas de Restrição do DNA , Peso Molecular
2.
J Biol Chem ; 258(18): 11185-96, 1983 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-6885816

RESUMO

This paper describes the construction of a DNA molecule containing a topologically stable structure that simulates a replication fork. This preformed DNA molecule is a circular duplex of 7.2 X 10(3) base pairs (M13mp6 DNA) from which arises, at a unique BamHI recognition site, a noncomplementary 5'-phosphoryl-terminated single strand of 237 nucleotides (SV40 DNA). This structure has two experimental attributes. 1) Templates for both leading and lagging strand synthesis exist as stable structures prior to any DNA synthesis. 2) DNA synthesis creates a cleavage site for the restriction endonuclease BamHI. Form I of T7 DNA polymerase, alone, catalyzes limited DNA synthesis at the preformed replication fork whereas Form II, alone, polymerizes less than 5 nucleotides. However, when T7 gene 4 protein is present, Form II of T7 DNA polymerase catalyzes rapid and extensive synthesis via a rolling circle mode. Kinetic analysis of this synthesis reveals that the fork moves at a rate of 300 bases/s at 30 degrees C. We conclude that the T7 gene 4 protein requires a single-stranded DNA binding site from which point it translocates to the replication fork where it functions as a helicase. The phage T4 DNA polymerase catalyzes DNA synthesis at this preformed replication fork in the presence of gene 4 protein, but the amount of DNA synthesized is less that 3% of the amount synthesized by the combination of Form II of T7 DNA polymerase and gene 4 protein. We conclude that T7 DNA polymerase and T7 gene 4 protein interact specifically during DNA synthesis at a replication fork.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fagos T/enzimologia , Eletroforese em Gel de Ágar , Genes Virais , Microscopia Eletrônica , Conformação de Ácido Nucleico
3.
J Biol Chem ; 258(18): 11174-84, 1983 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-6309835

RESUMO

The DNA polymerase induced after infection of Escherichia coli by bacteriophage T7 can exist in two forms. One distinguishing property of Form I, the elimination of nicks in double-stranded DNA templates, strongly suggests that this form of the polymerase catalyzes limited DNA synthesis at nicks, resulting in displacement of the downstream strand. In this paper, we document this reaction by a detailed characterization of the DNA product. DNA synthesis on circular, duplex DNA templates containing a single site-specific nick results in circular molecules bearing duplex branches. Analysis of newly synthesized DNA excised from the product shows that the majority of the branches are less than 500 base pairs in length and that they arise from a limited number of sites. The branches have fully base-paired termini but are attached by two noncomplementary DNA strands that have a combined length of less than 30 nucleotides. The product molecules are topologically constrained as a result of the duplex branch. DNA sequence analysis has provided an unequivocal structure of one such product molecule. We conclude that strand displacement synthesis catalyzed by Form I of T7 DNA polymerase is terminated by a template-switching reaction. We propose two distinct models for template-switching that we call primer relocation and rotational strand exchange. Strand displacement synthesis catalyzed by Form I of T7 DNA polymerase effectively converts T7 DNA circles that are held together by hydrogen bonds in their 160-nucleotide-long terminal redundancy to T7-length linear molecules. We suggest that strand displacement synthesis catalyzed by T7 DNA polymerase is essential in vivo to the processing of a T7 DNA concatemer to mature T7 genomes.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Isoenzimas/metabolismo , Fagos T/enzimologia , Sequência de Bases , Replicação do DNA , Eletroforese em Gel de Ágar , Endonucleases/metabolismo , Microscopia Eletrônica , Endonucleases Específicas para DNA e RNA de Cadeia Simples
4.
J Biol Chem ; 258(18): 11165-73, 1983 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-6411726

RESUMO

The DNA polymerase induced by bacteriophage T7 can be isolated in two different forms. The distinguishing properties are: 1) the specific activities of the associated 3' to 5' single- and double-stranded DNA exonuclease activities, 2) the ability to catalyze DNA synthesis and strand displacement at nicks, and 3) the degree of stimulation of DNA synthesis on nicked, duplex DNAs by the gene 4 protein of phage T7. Form I is obtained when purification is carried out in the absence of EDTA while Form II is obtained if all purification steps are carried out in the presence of 0.1 mM EDTA. Form I has low levels of both exonuclease activities, less than 5% of those of Form II. Form I can initiate DNA synthesis at nicks leading to strand displacement, a consequence of which is its ability to be stimulated manyfold by the helicase activity of gene 4 protein on nicked, duplex templates. On the other hand, Form II cannot initiate synthesis at nicks even in the presence of gene 4 protein. In keeping with its higher exonuclease activities, Form II of T7 DNA polymerase has higher turnover of nucleotides activity (5-fold higher than Form I) and exhibits greater fidelity of nucleotide incorporation, as indicated by the rate of incorporation of 2-aminopurine deoxynucleoside monophosphate. Both forms of T7 DNA polymerase exhibit higher fidelity of nucleotide incorporation than bacteriophage T4 DNA polymerase. In the absence of EDTA or in the presence of FeSO4 or CaCl2, Form II irreversibly converts to Form I. The physical difference between the two forms is not known. No difference in molecular weight can be detected between the corresponding subunits of each form of T7 DNA polymerase as measured by gel electrophoresis in the presence of sodium dodecyl sulfate.


Assuntos
DNA Polimerase Dirigida por DNA/análise , Isoenzimas/análise , Fagos T/enzimologia , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/isolamento & purificação , Ácido Edético , Genes Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA