Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 21(1): 10, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429797

RESUMO

BACKGROUND: Crystalline silica (cSiO2) is a mineral found in rocks; workers from the construction or denim industries are particularly exposed to cSiO2 through inhalation. cSiO2 inhalation increases the risk of silicosis and systemic autoimmune diseases. Inhaled cSiO2 microparticles can reach the alveoli where they induce inflammation, cell death, auto-immunity and fibrosis but the specific molecular pathways involved in these cSiO2 effects remain unclear. This systematic review aims to provide a comprehensive state of the art on omic approaches and exposure models used to study the effects of inhaled cSiO2 in mice and rats and to highlight key results from omic data in rodents also validated in human. METHODS: The protocol of systematic review follows PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Eligible articles were identified in PubMed, Embase and Web of Science. The search strategy included original articles published after 1990 and written in English which included mouse or rat models exposed to cSiO2 and utilized omic approaches to identify pathways modulated by cSiO2. Data were extracted and quality assessment was based on the SYRCLE's Risk of Bias tool for animal studies. RESULTS: Rats and male rodents were the more used models while female rodents and autoimmune prone models were less studied. Exposure of animals were both acute and chronic and the timing of outcome measurement through omics approaches were homogeneously distributed. Transcriptomic techniques were more commonly performed while proteomic, metabolomic and single-cell omic methods were less utilized. Immunity and inflammation were the main domains modified by cSiO2 exposure in lungs of mice and rats. Less than 20% of the results obtained in rodents were finally verified in humans. CONCLUSION: Omic technics offer new insights on the effects of cSiO2 exposure in mice and rats although the majority of data still need to be validated in humans. Autoimmune prone model should be better characterised and systemic effects of cSiO2 need to be further studied to better understand cSiO2-induced autoimmunity. Single-cell omics should be performed to inform on pathological processes induced by cSiO2 exposure.


Assuntos
Dióxido de Silício , Silicose , Animais , Ratos , Inflamação/induzido quimicamente , Pulmão , Proteômica , Dióxido de Silício/efeitos adversos , Silicose/patologia , Camundongos
2.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894824

RESUMO

While exposure to long amphibolic asbestos fibers (L > 10 µm) results in the development of severe diseases including inflammation, fibrosis, and mesothelioma, the pathogenic activity associated with short fibers (L < 5 µm) is less clear. By exposing murine macrophages to short (SFA) or long (LFA) fibers of amosite asbestos different in size and surface chemistry, we observed that SFA internalization resulted in pyroptotic-related immunogenic cell death (ICD) characterized by the release of the pro-inflammatory damage signal (DAMP) IL-1α after inflammasome activation and gasdermin D (GSDMD)-pore formation. In contrast, macrophage responses to non-internalizable LFA were associated with tumor necrosis factor alpha (TNF-α) release, caspase-3 and -7 activation, and apoptosis. SFA effects exclusively resulted from Toll-like receptor 4 (TLR4), a pattern-recognition receptor (PRR) recognized for its ability to sense particles, while the response to LFA was elicited by a multifactorial ignition system involving the macrophage receptor with collagenous structure (SR-A6 or MARCO), reactive oxygen species (ROS) cascade, and TLR4. Our findings indicate that asbestos fiber size and surface features play major roles in modulating ICD and inflammatory pathways. They also suggest that SFA are biologically reactive in vitro and, therefore, their inflammatory and toxic effects in vivo should not be underestimated.


Assuntos
Amianto Amosita , Amianto , Camundongos , Animais , Amianto Amosita/toxicidade , Receptor 4 Toll-Like , Macrófagos , Amianto/toxicidade , Apoptose
3.
J Immunol ; 204(9): 2492-2502, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32213567

RESUMO

The chemokine CXCL13 controls the normal organization of secondary lymphoid tissues and the neogenesis of ectopic lymphoid structures in nonlymphoid organs, particularly the lungs. The progression and severity of idiopathic pulmonary fibrosis (IPF), a fatal and irreversible interstitial lung disease, is predicted by the circulating blood concentrations of CXCL13. Although CXCL13 is produced by pulmonary tissues, it has not been determined which cells are involved. This study examines CXCL13 production by lung tissue macrophages from patients with IPF and the signaling pathways controlling CXCL13 gene expression in human alveolar macrophages (AM) and monocyte-derived macrophages (MoDM). CXCL13 is found in CD68- and CD206-positive AM from patients with IPF, and the CXCL13 gene is induced in these macrophages and MoDM when they are stimulated with LPS. We found that TNF-α and IL-10 control optimal CXCL13 gene expression in MoDM and possibly in AM by activating the NF-κB and JAK/STAT pathways, respectively. We also found that blood TNF-α and CXCL13 concentrations are significantly correlated in patients with IPF, suggesting that TNF-α contributes to CXCL13 production in humans. In conclusion, the results of this study demonstrate that AM from patients with IPF produces CXCL13 and that the NF-κB and JAK/STAT pathways are required to induce the expression of this major chemokine.


Assuntos
Quimiocina CXCL13/metabolismo , Interleucina-10/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Idoso , Feminino , Expressão Gênica/fisiologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Janus Quinases/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , NF-kappa B/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia
4.
Curr Opin Rheumatol ; 33(6): 463-470, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506339

RESUMO

PURPOSE OF REVIEW: To discuss recent studies addressing the role of monocytes and macrophages in the pathogenesis of systemic sclerosis (SSc) based on human and mouse models. RECENT FINDINGS: Studies indicate that monocyte adhesion could be increased in SSc secondary to an interferon-dependent loss of CD52, and chemotaxis up-regulated through the CCR3/CCL24 pathway. Beyond the conventional M1/M2 paradigm of macrophage subpopulations, new subpopulations of macrophages have been recently described in skin and lung biopsies from SSc patients. Notably, single-cell ribonucleic acid sequencing has provided evidence for SPP1+ lung macrophages or FCGR3A+ skin macrophages in SSc. Impaired pro-resolving capacities of macrophages such as efferocytosis, i.e. the ability to phagocyte apoptotic cells, could also participate in the inflammatory and autoimmune features in SSc. SUMMARY: Through their potential pro-fibrotic and pro-inflammatory properties, macrophages are at the cross-road of key SSc pathogenic processes and associated manifestations. Investigative drugs targeting macrophage polarization, such as pan-janus kinase inhibitors (tofacitinib or ruxolitinib) impacting both M1 and M2 activations, or Romilkimab inhibiting IL-4 and IL-13, have shown promising results in preclinical models or phase I/II clinical trials in SSc and other fibro-inflammatory disorders. Macrophage-based cellular therapy may also represent an innovative approach for the treatment of SSc, as initial training of macrophages may modulate the severity of fibrotic and autoimmune manifestations of the disease.


Assuntos
Monócitos , Escleroderma Sistêmico , Animais , Fibrose , Humanos , Macrófagos/patologia , Camundongos , Receptores de IgG , Escleroderma Sistêmico/etiologia , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/terapia , Pele/patologia
5.
Nucleic Acids Res ; 47(4): 1759-1773, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30544243

RESUMO

Bacterial type I toxin-antitoxin (TA) systems are widespread, and consist of a stable toxic peptide whose expression is monitored by a labile RNA antitoxin. We characterized Staphylococcus aureus SprA2/SprA2AS module, which shares nucleotide similarities with the SprA1/SprA1AS TA system. We demonstrated that SprA2/SprA2AS encodes a functional type I TA system, with the cis-encoded SprA2AS antitoxin acting in trans to prevent ribosomal loading onto SprA2 RNA. We proved that both TA systems are distinct, with no cross-regulation between the antitoxins in vitro or in vivo. SprA2 expresses PepA2, a toxic peptide which internally triggers bacterial death. Conversely, although PepA2 does not affect bacteria when it is present in the extracellular medium, it is highly toxic to other host cells such as polymorphonuclear neutrophils and erythrocytes. Finally, we showed that SprA2AS expression is lowered during osmotic shock and stringent response, which indicates that the system responds to specific triggers. Therefore, the SprA2/SprA2AS module is not redundant with SprA1/SprA1AS, and its PepA2 peptide exhibits an original dual mode of action against bacteria and host cells. This suggests an altruistic behavior for S. aureus in which clones producing PepA2 in vivo shall die as they induce cytotoxicity, thereby promoting the success of the community.


Assuntos
Proteínas de Bactérias/genética , Infecções Estafilocócicas/genética , Staphylococcus aureus/genética , Sistemas Toxina-Antitoxina/genética , Sequência de Aminoácidos/genética , Regulação Bacteriana da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia
6.
Inflamm Res ; 69(1): 51-62, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31654094

RESUMO

OBJECTIVE AND DESIGN: To determine whether inflammatory hepatocytes may constitute primary targets for ruxolitinib, a Janus kinase (JAK) inhibitor, its effects towards expression of hepatic acute-phase proteins, especially C-reactive protein (CRP), were assessed. MATERIALS: Ruxolitinib effects were analysed in primary human hepatocytes and human hepatoma HepaRG cells exposed to various inflammatory stimuli. RESULTS: Ruxolitinib was found to fully inhibit lipopolysaccharide (LPS)-induced CRP secretion and mRNA expression, at concentrations (IC50 = 12.9 nM) achievable in human blood. It similarly repressed CRP up-regulation due to several Toll-like receptor agonists or pro-inflammatory cytokines [interleukin (IL) 1ß, IL6 and tumour necrosis factor α] and counteracted LPS-mediated induction of serum amyloid A, fibrinogen, haptoglobin and serpin. Ruxolitinib was additionally found to block the activation of the IL6/JAK/signal transducer and activator of transcription (STAT) pathway triggered by LPS and whose inhibition by the neutralizing anti-IL6 receptor antibody tocilizumab prevented CRP induction. CONCLUSION: Ruxolitinib can potently repress induction of CRP in inflammatory human hepatocytes, most likely through targeting the IL6/JAK/STAT signalling cascade. Hepatic production of acute-phase proteins during liver inflammation may, therefore, constitute a target for ruxolitinib.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína C-Reativa/antagonistas & inibidores , Hepatócitos/efeitos dos fármacos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Proteínas de Fase Aguda/genética , Adulto , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Células Cultivadas , Citocinas/genética , Hepatócitos/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Lipopolissacarídeos , Nitrilas , Pirimidinas , RNA Mensageiro/metabolismo
7.
Immunol Cell Biol ; 97(3): 340-347, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30426551

RESUMO

A defect in the apoptotic cell clearance (efferocytosis) by phagocytic cells may participate in autoimmunity and chronic inflammation. The mechanisms leading to the emergence of autoimmunity in systemic sclerosis (SSc) are still to be determined. In this study, the efferocytosis capacities of blood monocyte-derived macrophages (MDM) from patients with SSc were evaluated. Blood monocytes obtained from patients with SSc and healthy donors (HD) were differentiated in vitro into macrophages. The capacities of MDM to engulf CFSE+ apoptotic Jurkat human T lymphocytes were compared between SSc MDM and HD using flow cytometry. The expression of classical engulfing receptors in SSc MDM and HD MDM was also evaluated and their involvement in the modulation of efferocytosis was confirmed using a siRNA approach. The mean phagocytic index (PI) reflecting efferocytosis capacities of SSc MDM (PI = 19.3 ± 3.0; n = 21) was significantly decreased in comparison with the PI of HD MDM (PI = 35.9 ± 3.0; n = 31; P < 0.001). In comparison with HD, SSc MDM exhibited a downregulated expression of scavenger receptor (SR)-B1, SR-A1 and integrin ß5 (ITGß5). In HD MDM, the extinction of these receptors was followed by a reduction of efferocytosis only for the repression of ITGß5, suggesting a possible selective role of this integrin in the impaired efferocytosis observed in SSc. As efferocytosis may be at the crossroads of inflammation, autoimmunity and fibrosis, in showing impaired efferocytosis capacities of blood MDM in SSc, our study offers new pathogenesis considerations for the involvement of macrophages in the autoimmune processes driving this disorder.


Assuntos
Macrófagos/imunologia , Fagocitose/imunologia , Escleroderma Sistêmico/imunologia , Estudos de Casos e Controles , Humanos , Cadeias beta de Integrinas/metabolismo , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Receptores Depuradores Classe B/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo
9.
Int J Mol Sci ; 19(3)2018 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-29562615

RESUMO

Macrophages play a central role in the pathogenesis of inflammatory and fibrotic lung diseases. However, alveolar macrophages (AM) are poorly available in humans to perform in vitro studies due to a limited access to broncho-alveolar lavage (BAL). In this study, to identify the best alternative in vitro model for human AM, we compared the phenotype of AM obtained from BAL of patients suffering from three lung diseases (lung cancers, sarcoidosis and Systemic Sclerosis (SSc)-associated interstitial lung disease) to human blood monocyte-derived macrophages (MDMs) differentiated with M-CSF or GM-CSF. The expression of eight membrane markers was evaluated by flow cytometry. Globally, AM phenotype was closer to GM-CSF MDMs. However, the expression levels of CD163, CD169, CD204, CD64 and CD36 were significantly higher in SSc-ILD than in lung cancers. Considering the expression of CD204 and CD36, the phenotype of SSc-AM was closer to MDMs, from healthy donors or SSc patients, differentiated by M-CSF rather than GM-CSF. The comparative secretion of IL-6 by SSc-MDMs and SSc-AM is concordant with these phenotypic considerations. Altogether, these results support the M-CSF MDM model as a relevant in vitro alternative to simulate AM in fibrotic disorders such as SSc.


Assuntos
Neoplasias Pulmonares/imunologia , Macrófagos Alveolares/imunologia , Sarcoidose Pulmonar/imunologia , Escleroderma Sistêmico/imunologia , Idoso , Antígenos CD/análise , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/análise , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/análise , Humanos , Fator Estimulador de Colônias de Macrófagos/análise , Macrófagos Alveolares/química , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células
10.
Environ Res ; 158: 691-702, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28735230

RESUMO

BACKGROUND: Dairy working increases the prevalence of lower airway respiratory diseases, especially COPD and asthma. Epidemiological studies have reported that chronic inhalation of organic dusts released during specific daily tasks could represent a major risk factor for development of these pathologies in dairy workers. Knowledge on size, nature and biological activity of such organic dusts remain however limited. OBJECTIVE: To compare size distribution, microbial composition and cellular effects of dusts liberated by the spreading of straw bedding in five French dairy farms located in Brittany. RESULTS: Mechanized distribution of straw bedding generated a cloud of inhalable dusts in the five dairy farms' barns. Thoracic particles having a 3-7.5µm size constituted 58.9-68.3% of these dusts. Analyses of thoracic dusts by next generation sequencing showed that the microbial dust composition differed between the five French farms, although Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria represent more than 97.5% of the bacterial phyla detected in each sample. Several bacteria genera comprising of human pathogenic species, such as Pseudomonas, Staphylococcus, Thermoactinomyces or Saccharopolyspora were identified. Cladosporium and Alternaria fungal genera, which are potent environmental determinants of respiratory symptoms, were detected in dusts collected in the five farms and their levels reached 15.5-51.1% and 9-24.7% of assignable fungal sequences in each sample, respectively. Finally, all dust samples significantly and strongly increased the expression of the pro-inflammatory TNF-α, IL-1ß, IL-6 and IL-8 cytokines at both mRNA and protein levels in human monocyte-derived macrophages. Their effects were dose-dependent and detectable from 1µg/ml. The intensity of the macrophage responses however differed according to the samples. CONCLUSIONS: Our results strengthen the hypothesis that organic dusts released during the distribution of straw bedding are mainly constituted of thoracic particles which are small enough to deposit on lower bronchial epithelium of dairy farmers and induce inflammation.


Assuntos
Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Poluentes Atmosféricos/análise , Indústria de Laticínios , Poeira/análise , Fazendas , Exposição Ocupacional , Poluentes Atmosféricos/imunologia , Poluentes Ocupacionais do Ar/imunologia , Poeira/imunologia , França , Humanos , Exposição por Inalação , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia
11.
Toxicol Appl Pharmacol ; 290: 74-85, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26621329

RESUMO

The heterodimeric L-type amino acid transporter (LAT) 1/CD98hc is overexpressed in lung cancers with a poor prognosis factor. Factors that contribute to LAT1/CD98hc overexpression in lung cells remain however to be determined, but the implication of atmospheric pollution can be suspected. The present study was therefore designed to analyze the effects of diesel exhaust particle (DEP) extract (DEPe) on LAT1/CD98hc expression in bronchial epithelial BEAS-2B cells. Exposure to DEPe up-regulated LAT1 and CD98hc mRNA levels in a concentration-dependent manner, with DEPe EC50 values (around 0.2 µg/mL) relevant to environmental situations. DEPe concomitantly induced LAT1/CD98hc protein expression and LAT1-mediated leucine accumulation in BEAS-2B cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway through the use of a chemical AhR antagonist or the siRNA-mediated silencing of AhR expression was next found to prevent DEPe-mediated induction of LAT1/CD98hc, indicating that this regulation depends on AhR, known to be activated by major chemical DEP components like polycyclic aromatic hydrocarbons. DEPe exposure was finally shown to induce mRNA expression and activity of matrix metalloproteinase (MMP)-2 in BEAS-2B cells, in a CD98hc/focal adhesion kinase (FAK)/extracellular regulated kinase (ERK) manner, thus suggesting that DEPe-mediated induction of CD98hc triggers activation of the integrin/FAK/ERK signaling pathway known to be involved in MMP-2 regulation. Taken together, these data demonstrate that exposure to DEPe induces functional overexpression of the amino acid transporter LAT1/CD98hc in lung cells. Such a regulation may participate to pulmonary carcinogenic effects of DEPs, owing to the well-documented contribution of LAT1 and CD98hc to cancer development.


Assuntos
Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Pulmão/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Regulação para Cima , Emissões de Veículos/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Pulmão/citologia , Pulmão/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
14.
Toxicol Appl Pharmacol ; 285(3): 170-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25896968

RESUMO

Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rß, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rß pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants.


Assuntos
Proliferação de Células , Fibroblastos/citologia , Macrófagos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Emissões de Veículos/toxicidade , Becaplermina , Benzo(a)pireno/toxicidade , Linhagem Celular Tumoral , Humanos , Macrófagos/metabolismo , Fosforilação , Dibenzodioxinas Policloradas/toxicidade , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Tirfostinas/farmacologia
17.
Cell Commun Signal ; 12: 48, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25201625

RESUMO

BACKGROUND: The aryl hydrocarbon receptor (AhR) has gradually emerged as a regulator of inflammation in the lung and other tissues. AhR may interact with the p65-subunit of the nuclear factor (NF)-κB transcription factors, but reported outcomes of AhR/NF-κB-interactions are conflicting. Some studies suggest that AhR possess pro-inflammatory activities while others suggest that AhR may be anti-inflammatory. The present study explored the impact of AhR and its binding partner AhR nuclear translocator (Arnt) on p65-activation and two differentially regulated chemokines, CXCL8 (IL-8) and CCL5 (RANTES), in human bronchial epithelial cells (BEAS-2B). RESULTS: Cells were exposed to CXCL8- and CCL5-inducing chemicals, 1-nitropyrene (1-NP) and 1-aminopyrene (1-AP) respectively, or the synthetic double-stranded RNA analogue, polyinosinic-polycytidylic acid (Poly I:C) which induced both chemokines. Only CXCL8, and not CCL5, appeared to be p65-dependent. Yet, constitutively active unligated AhR suppressed both CXCL8 and CCL5, as shown by siRNA knock-down and the AhR antagonist α-naphthoflavone. Moreover, AhR suppressed activation of p65 by TNF-α and Poly I:C as assessed by luciferase-assay and p65-phosphorylation at serine 536, without affecting basal p65-activity. In contrast, Arnt suppressed only CXCL8, but did not prevent the p65-activation directly. However, Arnt suppressed expression of the NF-κB-subunit RelB which is under transcriptional regulation by p65. Furthermore, AhR-ligands alone at high concentrations induced a moderate CXCL8-response, without affecting CCL5, but suppressed both CXCL8 and CCL5-responses by Poly I:C. CONCLUSION: AhR and Arnt may differentially and independently regulate chemokine-responses induced by both inhaled pollutants and pulmonary infections. Constitutively active, unligated AhR suppressed the activation of p65, while Arnt may possibly interfere with the action of activated p65. Moreover, ligand-activated AhR suppressed CXCL8 and CCL5 responses by other agents, but AhR ligands alone induced CXCL8 responses when given at sufficiently high concentrations, thus underscoring the duality of AhR in regulation of inflammation. We propose that AhR-signaling may be a weak activator of p65-signaling that suppresses p65-activity induced by strong activators of NF-κB, but that its anti-inflammatory properties also are due to interference with additional pathways.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Brônquios/citologia , Quimiocina CCL5/metabolismo , Células Epiteliais/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Atmosféricos/farmacologia , Benzoflavonas/farmacologia , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Humanos , Fosforilação , Poli I-C/farmacologia , Pirenos/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Serina/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
18.
J Mol Med (Berl) ; 102(2): 197-211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38015242

RESUMO

The underlying mechanisms of asbestos-related autoimmunity are poorly understood. As the size, surface reactivity, and free radical activity of asbestos particles are considered crucial regarding the health effects, this study aims to compare the effects of exposure to pristine amosite (pAmo) or milled amosite (mAmo) particles on lung damage, autoimmunity, and macrophage phenotype. Four months after lung exposure to 0.1 mg of amosite, BAL levels of lactate dehydrogenase, protein, free DNA, CCL2, TGF-ß1, TIMP-1, and immunoglobulin A of pAmo-exposed C57Bl/6 mice were increased when compared to fluids from control- and mAmo-exposed mice. Effects in pAmo-exposed mice were associated with lung fibrosis and autoimmunity including anti-double-strand DNA autoantibody production. mAmo or pAmo at 20 µg/cm2 induced a pro-inflammatory phenotype characterized by a significant increase in TNFα and IL-6 secretion on human monocyte-derived macrophages (MDMs). mAmo and pAmo exposure induced a decrease in the efferocytosis capacities of MDMs, whereas macrophage abilities to phagocyte fluorescent beads were unchanged when compared to control MDMs. mAmo induced IL-6 secretion and reduced the percentage of MDMs expressing MHCII and CD86 markers involved in antigen and T-lymphocyte stimulation. By contrast, pAmo but not mAmo activated the NLRP3 inflammasome, as evaluated through quantification of caspase-1 activity and IL-1ß secretion. Our results demonstrated that long-term exposure to pAmo may induce significant lung damage and autoimmune effects, probably through an alteration of macrophage phenotype, supporting in vivo the higher toxicity of entire amosite (pAmo) with respect to grinded amosite. However, considering their impact on efferocytosis and co-stimulation markers, mAmo effects should not be neglected. KEY MESSAGES: Lung fibrosis and autoimmunity induced by amosite particles depend on their physicochemical characteristics (size and surface) Inhalation exposure of mice to pristine amosite fibers is associated with lung fibrosis and autoimmunity Anti-dsDNA antibody is a marker of autoimmunity in mice exposed to pristine amosite fibers Activation of lung mucosa-associated lymphoid tissue, characterized by IgA production, after exposure to pristine amosite fibers Pristine and milled amosite particle exposure reduced the efferocytosis capacity of human-derived macrophages.


Assuntos
Amianto Amosita , Fibrose Pulmonar , Humanos , Camundongos , Animais , Amianto Amosita/farmacologia , Amianto Amosita/toxicidade , Fibrose Pulmonar/induzido quimicamente , Autoimunidade , Interleucina-6/metabolismo , Pulmão/metabolismo , Macrófagos , DNA/metabolismo
19.
Cell Immunol ; 281(1): 51-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23454681

RESUMO

Monocytes/macrophages (MΦ), considered as plastic cells, can differentiate into either a pro-inflammatory (M1) subtype, also known as a classically activated subtype, or an anti-inflammatory alternatively activated subtype (M2) according to their microenvironment. Phenotypic markers of mouse polarized MΦ have been extensively studied, whereas their human counterparts remain less characterized. The main goal of this study was therefore to carefully characterize phenotypic and genomic markers of primary human MΦ generated from M-CSF-treated blood monocytes and polarized towards M1 or M2 subtype upon the action of lipopolysaccharide and interferon-γ (for M1) or interleukin (IL)-4 (for M2). Membrane expression of the markers CD80 and CD200R was found to be specific of human M1 and M2 polarized MΦ, respectively, whereas, by contrast, mannose receptor (CD206) expression did not discriminate between M1 and M2. mRNA expression analysis further identified six markers of M1 polarization (IL-12p35, CXCL10, CXCL11, CCL5, CCR7 and IDO1), five markers of M2 polarization (TGF-ß, CCL14, CCL22, SR-B1 and PPARγ) and transcription factors involved in MΦ polarization. Ability of human M-CSF-generated MΦ to polarize toward M1 or M2 subtype was also associated with enhanced secretion of TNFα, IL-1ß, IL-12p40, CXCL10 and IL-10 (for M1) or CCL22 (for M2). Moreover, the comparison of the expression of M1 markers in M-CSF- and GM-CSF-MΦ polarized towards M1 subtype has revealed similarities. In conclusion, we demonstrated that human M-CSF MΦ can polarize toward a M1 type after IFNγ/LPS stimulation. Moreover, the M1 and M2 markers of human polarized MΦ identified in the present study may be useful to better identify human MΦ subtypes, particularly at the tissue level, in order to better understand their respective roles in the development of pathologies.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Leucócitos Mononucleares/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , Antígenos de Superfície/biossíntese , Antígeno B7-1/biossíntese , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Quimiocinas/biossíntese , Citocinas/biossíntese , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interferon gama , Interleucina-4 , Lectinas Tipo C/biossíntese , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Receptor de Manose , Lectinas de Ligação a Manose/biossíntese , Receptores de Orexina , RNA Mensageiro/biossíntese , Receptores de Superfície Celular/biossíntese
20.
Int Immunopharmacol ; 116: 109723, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696855

RESUMO

Systemic sclerosis (SSc) is an autoimmune fibrotic disorder notably characterized by the production of antinuclear autoantibodies, which have been linked to an excess of apoptotic cells, normally eliminated by a macrophagic efferocytosis. As interferon (IFN) signature and phosphorylation of JAK-STAT proteins are hallmarks of SSc tissues, we tested the hypothesis that a JAK inhibitor, ruxolitinib, targeting the IFN signaling, could improve efferocytosis of IFN-exposed human macrophages in vitro as well as skin and lung fibrosis. In vivo, BLM- and HOCl-induced skin thickness and fibrosis is associated with an increase of caspase-3 positive dermal cells and a significant increase of IFN-stimulated genes expression. In BLM-SSc model, ruxolitinib prevented dermal thickness, fibrosis and significantly decreased the number of cleaved caspase-3 cells in the dermis. Ruxolitinib also improved lung architecture and fibrosis although IFN signature was not entirely decreased by ruxolitinib. In vitro, ruxolitinib improves efferocytosis capacity of human monocyte-differentiated macrophages exposed to IFN-γ or IFN-ß. In human fibroblasts derived from lung (HLF) biopsies isolated from patients with idiopathic pulmonary fibrosis, the reduced mRNA expression of typical TGF-ß-activated markers by ruxolitinib was associated with a decrease of the phosphorylation of SMAD2 /3 and STAT3. Our finding supports the anti-fibrotic properties of ruxolitinib in a systemic SSc mouse model and in vitro in human lung fibroblasts.


Assuntos
Escleroderma Sistêmico , Animais , Camundongos , Humanos , Caspase 3/metabolismo , Fibrose , Nitrilas/farmacologia , Pele/patologia , Fibroblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA