Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638576

RESUMO

Nuclear envelope (NE) and endoplasmic reticulum (ER) collaborate to control a multitude of nuclear and cytoplasmic actions. In this context, the transmembrane protein TMEM147 localizes to both NE and ER, and through direct and indirect interactions regulates processes as varied as production and transport of multipass membrane proteins, neuronal signaling, nuclear-shape, lamina and chromatin dynamics and cholesterol synthesis. Aiming to delineate the emerging multifunctionality of TMEM147 more comprehensively, we set as objectives, first, to assess potentially more fundamental effects of TMEM147 on the ER and, second, to identify significantly TMEM147-associated cell-wide protein networks and pathways. Quantifying curved and flat ER markers RTN4 and CLIMP63/CKAP4, respectively, we found that TMEM147 silencing causes area and intensity increases for both RTN4 and CLIMP63, and the ER in general, with a profound shift toward flat areas, concurrent with reduction in DNA condensation. Protein network and pathway analyses based on comprehensive compilation of TMEM147 interactors, targets and co-factors then served to manifest novel and established roles for TMEM147. Thus, algorithmically simplified significant pathways reflect TMEM147 function in ribosome binding, oxidoreductase activity, G protein-coupled receptor activity and transmembrane transport, while analysis of protein factors and networks identifies hub proteins and corresponding pathways as potential targets of TMEM147 action and of future functional studies.


Assuntos
Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Retículo Endoplasmático/ultraestrutura , Inativação Gênica , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas Nogo/metabolismo , Mapas de Interação de Proteínas , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Receptor de Lamina B
2.
Blood ; 126(5): 616-9, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26089395

RESUMO

Globin gene therapy requires abundant numbers of highly engraftable, autologous hematopoietic stem cells expressing curative levels of ß-globin on differentiation. In this study, CD34+ cells from 31 thalassemic patients mobilized with hydroxyurea+granulocyte colony-stimulating factor (G-CSF), G-CSF, Plerixafor, or Plerixafor+G-CSF were transduced with the TNS9.3.55 ß-globin lentivector and compared for transducibility and globin expression in vitro, as well as engraftment potential in a xenogeneic model after partial myeloablation. Transduction efficiency and vector copy number (VCN) averaged 48.4 ± 2.8% and 1.91 ± 0.04, respectively, whereas expression approximated the one-copy normal ß-globin output. Plerixafor+G-CSF cells produced the highest ß-globin expression/VCN. Long-term multilineage engraftment and persistent VCN and vector expression was encountered in all xenografted groups, with Plerixafor+G-CSF-mobilized cells achieving superior short-term engraftment rates, with similar numbers of CD34+ cells transplanted. Overall, Plerixafor+G-CSF not only allows high CD34+ cell yields but also provides increased ß-globin expression/VCN and enhanced early human chimerism under nonmyeloablative conditions, thus representing an optimal graft for thalassemia gene therapy.


Assuntos
Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas , Talassemia beta/terapia , Animais , Antígenos CD34/metabolismo , Benzilaminas , Ciclamos , Dosagem de Genes , Expressão Gênica , Vetores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/administração & dosagem , Xenoenxertos , Humanos , Camundongos , Camundongos Knockout , Transplante Autólogo , Globinas beta/genética , Talassemia beta/genética
3.
Blood ; 114(20): 4566-74, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19773545

RESUMO

The liver is the current site for pancreatic islet transplantation, but has many drawbacks due to immunologic and nonimmunologic factors. We asked whether pancreatic islets could be engrafted in the bone marrow (BM), an easily accessible and widely distributed transplant site that may lack the limitations seen in the liver. Syngeneic islets engrafted efficiently in the BM of C57BL/6 mice rendered diabetic by streptozocin treatment. For more than 1 year after transplantation, these animals showed parameters of glucose metabolism that were similar to those of nondiabetic mice. Islets in BM had a higher probability to reach euglycemia than islets in liver (2.4-fold increase, P = .02), showed a compact morphology with a conserved ratio between alpha and beta cells, and affected bone structure only very marginally. Islets in BM did not compromise hematopoietic activity, even when it was strongly induced in response to a BM aplasia-inducing infection with lymphocytic choriomeningitis virus. In conclusion, BM is an attractive and safe alternative site for pancreatic islet transplantation. The results of our study open a research line with potentially significant clinical impact, not only for the treatment of diabetes, but also for other diseases amenable to treatment with cellular transplantation.


Assuntos
Medula Óssea/cirurgia , Diabetes Mellitus Experimental/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas , Animais , Glicemia , Sobrevivência de Enxerto , Imuno-Histoquímica , Ilhotas Pancreáticas/anatomia & histologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
4.
J Clin Med ; 8(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766235

RESUMO

The common IVSI-110 (G>A) ß-thalassemia mutation is a paradigm for intronic disease-causing mutations and their functional repair by non-homologous end joining-mediated disruption. Such mutation-specific repair by disruption of aberrant regulatory elements (DARE) is highly efficient, but to date, no systematic analysis has been performed to evaluate disease-causing mutations as therapeutic targets. Here, DARE was performed in highly characterized erythroid IVSI-110(G>A) transgenic cells and the disruption events were compared with published observations in primary CD34+ cells. DARE achieved the functional correction of ß-globin expression equally through the removal of causative mutations and through the removal of context sequences, with disruption events and the restriction of indel events close to the cut site closely resembling those seen in primary cells. Correlation of DNA-, RNA-, and protein-level findings then allowed the extrapolation of findings to other mutations by in silico analyses for potential repair based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9, Cas12a, and transcription activator-like effector nuclease (TALEN) platforms. The high efficiency of DARE and unexpected freedom of target design render the approach potentially suitable for 14 known thalassemia mutations besides IVSI-110(G>A) and put it forward for several prominent mutations causing other inherited diseases. The application of DARE, therefore, has a wide scope for sustainable personalized advanced therapy medicinal product development for thalassemia and beyond.

5.
Mol Ther Methods Clin Dev ; 11: 9-28, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30320151

RESUMO

Gene therapy clinical trials require rigorous non-clinical studies in the most relevant models to assess the benefit-to-risk ratio. To support the clinical development of gene therapy for ß-thalassemia, we performed in vitro and in vivo studies for prediction of safety. First we developed newly GLOBE-derived vectors that were tested for their transcriptional activity and potential interference with the expression of surrounding genes. Because these vectors did not show significant advantages, GLOBE lentiviral vector (LV) was elected for further safety characterization. To support the use of hematopoietic stem cells (HSCs) transduced by GLOBE LV for the treatment of ß-thalassemia, we conducted toxicology, tumorigenicity, and biodistribution studies in compliance with the OECD Principles of Good Laboratory Practice. We demonstrated a lack of toxicity and tumorigenic potential associated with GLOBE LV-transduced cells. Vector integration site (IS) studies demonstrated that both murine and human transduced HSCs retain self-renewal capacity and generate new blood cell progeny in the absence of clonal dominance. Moreover, IS analysis showed an absence of enrichment in cancer-related genes, and the genes targeted by GLOBE LV in human HSCs are well known sites of integration, as seen in other lentiviral gene therapy trials, and have not been associated with clonal expansion. Taken together, these integrated studies provide safety data supporting the clinical application of GLOBE-mediated gene therapy for ß-thalassemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA