Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 48: 102650, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623712

RESUMO

Biodistribution analyses of nanocarriers are often performed with optical imaging. Though dye tags can interact with transporters, e.g., organic anion transporting polypeptides (OATPs), their influence on biodistribution was hardly studied. Therefore, this study compared tumor cell uptake and biodistribution (in A431 tumor-bearing mice) of four near-infrared fluorescent dyes (AF750, IRDye750, Cy7, DY-750) and dye-labeled poly(N-(2-hydroxypropyl)methacrylamide)-based nanocarriers (dye-pHPMAs). Tumor cell uptake of hydrophobic dyes (Cy7, DY-750) was higher than that of hydrophilic dyes (AF750, IRDye750), and was actively mediated but not related to OATPs. Free dyes' elimination depended on their hydrophobicity, and tumor uptake correlated with blood circulation times. Dye-pHPMAs circulated longer and accumulated stronger in tumors than free dyes. Dye labeling significantly influenced nanocarriers' tumor accumulation and biodistribution. Therefore, low-interference dyes and further exploration of dye tags are required to achieve the most unbiased results possible. In our assessment, AF750 and IRDye750 best qualified for labeling hydrophilic nanocarriers.


Assuntos
Portadores de Fármacos , Neoplasias , Camundongos , Animais , Portadores de Fármacos/química , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Corantes Fluorescentes/química , Imagem Óptica , Viés , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108226

RESUMO

Acetylsalicylic acid (ASA) is a well-established drug for heart attack and stroke prophylaxis. Furthermore, numerous studies have reported an anti-carcinogenic effect, but its exact mechanism is still unknown. Here, we applied VEGFR-2-targeted molecular ultrasound to explore a potential inhibitory effect of ASA on tumor angiogenesis in vivo. Daily ASA or placebo therapy was performed in a 4T1 tumor mouse model. During therapy, ultrasound scans were performed using nonspecific microbubbles (CEUS) to determine the relative intratumoral blood volume (rBV) and VEGFR-2-targeted microbubbles to assess angiogenesis. Finally, vessel density and VEGFR-2 expression were assessed histologically. CEUS indicated a decreasing rBV in both groups over time. VEGFR-2 expression increased in both groups up to Day 7. Towards Day 11, the binding of VEGFR-2-specific microbubbles further increased in controls, but significantly (p = 0.0015) decreased under ASA therapy (2.24 ± 0.46 au vs. 0.54 ± 0.55 au). Immunofluorescence showed a tendency towards lower vessel density under ASA and confirmed the result of molecular ultrasound. Molecular US demonstrated an inhibitory effect of ASA on VEGFR-2 expression accompanied by a tendency towards lower vessel density. Thus, this study suggests the inhibition of angiogenesis via VEGFR-2 downregulation as one of the anti-tumor effects of ASA.


Assuntos
Aspirina , Neoplasias , Camundongos , Animais , Aspirina/farmacologia , Aspirina/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Ultrassonografia
3.
Photochem Photobiol Sci ; 17(5): 617-621, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29687129

RESUMO

Photoacoustic imaging presents an innocuous imaging modality with good penetration depth and resolution. To use this modality for detection and imaging of pathological sites, new imaging probes need to be developed to enhance the contrast over endogenous sonophores. These contrast agents should specifically bind to the site of interest, be non-toxic and be cleared renally if applied intravenously. Small organic dyes with absorption in the near infrared spectrum often exhibit good photoacoustic response. However, such dyes are often not water soluble or they are cytotoxic. Here, we present a novel PEGylated sonophore based on diketopyrrolopyrrole (DPP), which overcomes these limitations and can be functionalized with desired biological recognition motifs using thiol-yne click chemistry. Proof of concept is demonstrated by functionalizing the DPP-based probe with an RGD peptide, resulting in specific binding to endothelial (HUVEC) cells and an efficient photoacoustic response.

4.
Nano Lett ; 17(8): 4665-4674, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28715227

RESUMO

Riboflavin transporters (RFTs) and the riboflavin carrier protein (RCP) are highly upregulated in many tumor cells, tumor stem cells, and tumor neovasculature, which makes them attractive targets for nanomedicines. Addressing cells in different tumor compartments requires drug carriers, which are not only able to accumulate via the EPR effect but also to extravasate, target specific cell populations, and get internalized by cells. Reasoning that antibodies are among the most efficient targeting systems developed by nature, we consider their size (∼10-15 nm) to be ideal for balancing passive and active tumor targeting. Therefore, small, short-circulating (10 kDa, ∼7 nm, t1/2 ∼ 1 h) and larger, longer-circulating (40 kDa, ∼13 nm, t1/2 ∼ 13 h) riboflavin-targeted branched PEG polymers were synthesized, and their biodistribution and target site accumulation were evaluated in mice bearing angiogenic squamous cell carcinoma (A431) and desmoplastic prostate cancer (PC3) xenografts. The tumor accumulation of the 10 kDa PEG was characterized by rapid intercompartmental exchange and significantly improved upon active targeting with riboflavin (RF). The 40 kDa PEG accumulated in tumors four times more efficiently than the small polymer, but its accumulation did not profit from active RF-targeting. However, RF-targeting enhanced the cellular internalization in both tumor models and for both polymer sizes. Interestingly, the nanocarriers' cell-uptake in tumors was not directly correlated with the extent of accumulation. For example, in both tumor models the small RF-PEG accumulated much less strongly than the large passively targeted PEG but showed significantly higher intracellular amounts 24 h after iv administration. Additionally, the size of the polymer determined its preferential uptake by different tumor cell compartments: the 10 kDa RF-PEGs most efficiently targeted cancer cells, whereas the highest uptake of the 40 kDa RF-PEGs was observed in tumor-associated macrophages. These findings imply that drug carriers with sizes in the range of therapeutic antibodies show balanced properties with respect to passive accumulation, tissue penetration, and active targeting. Besides highlighting the potential of RF-mediated (cancer) cell targeting, we show that strong tumor accumulation does not automatically mean high cellular uptake and that the nanocarriers' size plays a critical role in cell- and compartment-specific drug targeting.


Assuntos
Portadores de Fármacos/química , Polímeros/química , Neoplasias da Próstata/tratamento farmacológico , Riboflavina/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Xenoenxertos , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Tamanho da Partícula , Polietilenoglicóis/química , Propriedades de Superfície , Distribuição Tecidual
5.
Angiogenesis ; 19(2): 245-254, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26902100

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR-2) and α v ß 3 integrin are the most frequently addressed targets in molecular imaging of tumor angiogenesis. In preclinical studies, molecular imaging of angiogenesis has shown potential to detect and differentiate benign and malignant lesions of the breast. Thus, in this retrospective clinical study employing patient tissues, the diagnostic value of VEGFR-2, α v ß 3 integrin and vascular area fraction for the diagnosis and differentiation of breast neoplasia was evaluated. To this end, tissue sections of breast cancer (n = 40), pre-invasive ductal carcinoma in situ (DCIS; n = 8), fibroadenoma (n = 40), radial scar (n = 6) and normal breast tissue (n = 40) were used to quantify (1) endothelial VEGFR-2, (2) endothelial α v ß 3 integrin and (3) total α v ß 3 integrin expression, as well as (4) the vascular area fraction. Sensitivity and specificity to differentiate benign from malignant lesions were calculated for each marker by receiver operating characteristics (ROC) analyses. Whereas vessel density, as commonly used, did not significantly differ between benign and malignant lesions (AUROC: 0.54), VEGFR-2 and α v ß 3 integrin levels were gradually up-regulated in carcinoma versus fibroadenoma versus healthy tissue. The highest diagnostic accuracy for differentiating carcinoma from fibroadenoma was found for total α v ß 3 integrin expression (AUROC: 0.76), followed by VEGFR-2 (AUROC: 0.71) and endothelial α v ß 3 integrin expression (AUROC: 0.68). In conclusion, total α v ß 3 integrin expression is the best discriminator between breast cancer, fibroadenoma and normal breast tissue. With respect to vascular targeting and molecular imaging of angiogenesis, endothelial VEGFR-2 appeared to be slightly superior to endothelial α v ß 3 for differentiating benign from cancerous lesions.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Integrina alfaVbeta3/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
6.
Radiology ; 278(2): 430-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26313618

RESUMO

PURPOSE: To assess the ability of vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted and nontargeted ultrasonography (US) to depict antiangiogenic therapy effects and to investigate whether first-pass kinetics obtained with VEGFR2-targeted microbubbles provide independent data about tumor vascularization. MATERIALS AND METHODS: Governmental approval was obtained for animal experiments. Vascularization in response to anti-vascular endothelial growth factor receptor or vehicle-control treatment (10 per group) in HaCaT-ras A-5RT3 xenografts was longitudinally assessed in mice by means of first-pass kinetics of nontargeted microbubbles (BR1, BR38; Bracco, Geneva, Switzerland) and VEGFR2-targeted microbubbles (BR55, Bracco) before and 4, 7, and 14 days after therapy. VEGFR2 expression was determined 8 minutes after BR55 injection with destruction-replenishment analysis. US data were validated with immunohistochemistry. Significant differences were evaluated with the Mann-Whitney test. RESULTS: First-pass analysis with BR1, BR38, and BR55 showed similar tendencies toward decreasing vascularization, with a stronger decrease in tumors treated with anti-VEGF antibody. The median signal intensity (in arbitrary units [au]) of anti-VEGF antibody-treated versus control tumors at day 14 was as follows: BR1, 5.2 au (interquartile range [IQR], 3.2 au) vs 11.3 au (IQR, 10.0 au), respectively; BR38, 6.2 au (IQR, 3.5) vs 10.0 au (IQR, 7.8); and BR55, 9.5 au (IQR, 6.0 au) vs 13.8 au (IQR, 9.8) (P = .0230). VEGFR2 assessment with BR55 demonstrated significant differences between both groups throughout the therapy period (median signal intensity of anti-VEGF antibody-treated vs control tumors: 0.04 au [IQR, 0.1 au] vs 0.14 au [IQR, 0.08 au], respectively, at day 4, P = .0058; 0.04 au [IQR, 0.06 au] vs 0.13 au [IQR, 0.09 au] at day 7, P = .0058; and 0.06 au [IQR, 0.11 au] vs 0.16 au [IQR, 0.15 au] at day 14, P = .0247). Immunohistochemistry confirmed the lower microvessel density and VEGFR2-positive area fraction in tumors treated with anti-VEGF antibody. CONCLUSION: Antiangiogenic therapy effects were detected earlier and more distinctly with VEGFR2-targeted US than with functional US. First-pass analyses with BR55, BR38, and BR1 revealed similar results, with a decrease in vascularization during therapy. Functional data showed that BR55 is not strongly affected by early binding of the microbubbles to VEGFR2. Thus, functional and molecular imaging of angiogenesis can be performed with BR55 within one examination.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/tratamento farmacológico , Microbolhas , Imagem Molecular/métodos , Neovascularização Patológica/tratamento farmacológico , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Meios de Contraste , Feminino , Xenoenxertos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Camundongos , Camundongos Nus , Distribuição Aleatória , Células Tumorais Cultivadas , Ultrassonografia
7.
Am J Pathol ; 184(2): 431-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24262753

RESUMO

Angiogenesis is a hallmark of cancer, and its noninvasive visualization and quantification are key factors for facilitating translational anticancer research. Using four tumor models characterized by different degrees of aggressiveness and angiogenesis, we show that the combination of functional in vivo and anatomical ex vivo X-ray micro-computed tomography (µCT) allows highly accurate quantification of relative blood volume (rBV) and highly detailed three-dimensional analysis of the vascular network in tumors. Depending on the tumor model, rBV values determined using in vivo µCT ranged from 2.6% to 6.0%, and corresponds well with the values assessed using IHC. Using ultra-high-resolution ex vivo µCT, blood vessels as small as 3.4 µm and vessel branches up to the seventh order could be visualized, enabling a highly detailed and quantitative analysis of the three-dimensional micromorphology of tumor vessels. Microvascular parameters such as vessel size and vessel branching correlated very well with tumor aggressiveness and angiogenesis. In rapidly growing and highly angiogenic A431 tumors, the majority of vessels were small and branched only once or twice, whereas in slowly growing A549 tumors, the vessels were much larger and branched four to seven times. Thus, we consider that combining highly accurate functional with highly detailed anatomical µCT is a useful tool for facilitating high-throughput, quantitative, and translational (anti-) angiogenesis and antiangiogenesis research.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/diagnóstico por imagem , Neovascularização Patológica/diagnóstico por imagem , Microtomografia por Raio-X , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias/patologia , Neovascularização Patológica/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Eur Radiol ; 25(2): 472-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25196361

RESUMO

OBJECTIVE: Recombinant human erythropoietin (rhuEpo) is used clinically to treat anaemia. However, rhuEpo-treated cancer patients show decreased survival rates and erythropoietin receptor (EpoR) expression has been found in patient tumour tissue. Thus, rhuEpo application might promote EpoR(+) tumour progression. We therefore developed the positron emission tomography (PET)-probe (68)Ga-DOTA-rhuEpo and evaluated its performance in EpoR(+) A549 non-small-cell lung cancer (NSCLC) xenografts. METHODS: (68)Ga-DOTA-rhuEpo was generated by coupling DOTA-hydrazide to carbohydrate side-chains of rhuEpo. Biodistribution was determined in tumour-bearing mice 0.5, 3, 6, and 9 h after probe injection. Competition experiments were performed by co-injecting (68)Ga-DOTA-rhuEpo and rhuEpo in five-fold excess. Probe specificity was further evaluated histologically using Epo-Cy5.5 stainings. RESULTS: The blood half-life of (68)Ga-DOTA-rhuEpo was 2.6 h and the unbound fraction was cleared by the liver and kidney. After 6 h, the highest tumour to muscle ratio was reached. The highest (68)Ga-DOTA-rhuEpo accumulation was found in liver (10.06 ± 6.26%ID/ml), followed by bone marrow (1.87 ± 0.53%ID/ml), kidney (1.58 ± 0.39%ID/ml), and tumour (0.99 ± 0.16%ID/ml). EpoR presence in these organs was histologically confirmed. Competition experiments showed significantly (p < 0.05) lower PET-signals in tumour and bone marrow at 3 and 6 h. CONCLUSION: (68)Ga-DOTA-rhuEpo shows favourable pharmacokinetic properties and detects EpoR specifically. Therefore, it might become a valuable radiotracer to monitor EpoR status in tumours and support decision-making in anaemia therapy. KEY POINTS: • PET-probe (68) Ga-DOTA-rhuEpo was administered to assess the EpoR status in vivo • (68) Ga-DOTA-rhuEpo binds specifically to EpoR positive organs in vivo • Tumour EpoR status determination might enable decision-making in anaemia therapy with rhuEpo.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/química , Neoplasias Pulmonares/química , Neoplasias Experimentais/química , Tomografia por Emissão de Pósitrons/métodos , Receptores da Eritropoetina/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Linhagem Celular Tumoral , Epoetina alfa , Eritropoetina , Feminino , Xenoenxertos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Camundongos Nus , Neoplasias , Neoplasias Experimentais/diagnóstico por imagem , Proteínas Recombinantes , Distribuição Tecidual
9.
Nano Lett ; 14(2): 972-81, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24422585

RESUMO

Enhanced permeability and retention (EPR) and the (over-) expression of angiogenesis-related surface receptors are key features of tumor blood vessels. As a consequence, EPR-mediated passive and Arg-Gly-Asp (RGD) and Asn-Gly-Arg (NGR) based active tumor targeting have received considerable attention in the last couple of years. Using several different in vivo and ex vivo optical imaging techniques, we here visualized and quantified the benefit of RGD- and NGR-based vascular vs EPR-mediated passive tumor targeting. This was done using ∼ 10 nm sized polymeric nanocarriers, which were either labeled with DY-676 (peptide-modified polymers) or with DY-750 (peptide-free polymers). Upon coinjection into mice bearing both highly leaky CT26 and poorly leaky BxPC3 tumors, it was found that vascular targeting did work, resulting in rapid and efficient early binding to tumor blood vessels, but that over time, passive targeting was significantly more efficient, leading to higher overall levels and to more efficient retention within tumors. Although this situation might be different for larger carrier materials, these insights indicate that caution should be taken not to overestimate the potential of active over passive tumor targeting.


Assuntos
Antineoplásicos/administração & dosagem , Nanocápsulas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Oligopeptídeos/farmacocinética , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Difusão , Humanos , Camundongos , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Nanocompostos/química , Nanocompostos/ultraestrutura , Neoplasias Experimentais/patologia , Oligopeptídeos/química , Tamanho da Partícula
10.
Int J Cancer ; 135(3): 551-62, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23165423

RESUMO

Interleukin-6 (IL-6) is one of the major inflammatory interleukins that has been linked to cancer progression. In our model for human skin squamous cell carcinoma (SCC), IL-6 expression is strongly upregulated upon progression from benign tumors to highly malignant, metastasizing SCCs. We now demonstrate that IL-6 promotes malignant and invasive tumor growth in human skin SCCs by inducing cell type specific cytokine profiles in tumor keratinocytes and stromal fibroblasts, activating the latter towards a tumor associated fibroblast (TAF) phenotype. In three-dimensional organotypic cocultures in vitro invasive growth of IL-6 overexpressing tumor keratinocytes, is associated with increased expression of matrix metalloproteinase-2 (MMP-2), MMP-14 and tissue inhibitor of metalloproteinases-2, and clearly depends on IL-6 activated fibroblasts. IL-6-induced secretion of monocyte chemotactic protein-1 (MCP-1) in tumor keratinocytes and of hepatocyte growth factor in fibroblasts is crucial for regulating expression and activation of MMP-2. This functional role of IL-6 is confirmed in vivo. Here MMP-14 and MMP-2 expression occur exclusively in surface transplants of IL-6 overexpressing keratinocytes and fibroblasts are identified as important source of MMP-2. Our data indicate that tumor keratinocytes derived IL-6 activates stromal fibroblasts towards a TAF phenotype, promoting tumor invasion via enhanced expression and activation of MMP-2.


Assuntos
Carcinoma de Células Escamosas/patologia , Fibroblastos/patologia , Interleucina-6/metabolismo , Queratinócitos/patologia , Neoplasias Cutâneas/patologia , Células Estromais/patologia , Animais , Carcinoma de Células Escamosas/metabolismo , Adesão Celular , Comunicação Celular , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/metabolismo , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Hibridização In Situ , Queratinócitos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Neoplasias Cutâneas/metabolismo , Células Estromais/metabolismo
11.
Eur Radiol ; 24(2): 363-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24121671

RESUMO

OBJECTIVES: Molecular imaging of apoptosis is frequently discussed for monitoring cancer therapies. Here, we compare the low molecular weight phosphatidylserine-targeting ligand zinc2+-dipicolylamine (Zn2+-DPA) with the established but reasonably larger protein annexin V. METHODS: Molecular apoptosis imaging with the fluorescently labelled probes annexin V (750 nm, 36 kDa) and Zn2+-DPA (794 nm, 1.84 kDa) was performed in tumour-bearing mice (A431). Three animal groups were investigated: untreated controls and treated tumours after 1 or 4 days of anti-angiogenic therapy (SU11248). Additionally, µPET with 18 F-FDG was performed. Imaging data were displayed as tumour-to-muscle ratio (TMR) and validated by quantitative immunohistochemistry. RESULTS: Compared with untreated control tumours, TUNEL staining indicated significant apoptosis after 1 day (P < 0.05) and 4 days (P < 0.01) of treatment. Concordantly, Zn2+-DPA uptake increased significantly after 1 day (P < 0.05) and 4 days (P < 0.01). Surprisingly, annexin V failed to detect significant differences between control and treated animals. Contrary to the increasing uptake of Zn2+-DPA, 18 F-FDG tumour uptake decreased significantly at days 1 (P < 0.05) and 4 (P < 0.01). CONCLUSIONS: Increase in apoptosis during anti-angiogenic therapy was detected significantly better with the low molecular weight probe Zn2+-DPA than with the annexin V-based probe. Additionally, significant treatment effects were detectable as early using Zn2+-DPA as with measurements of the glucose metabolism using 18 F-FDG. KEY POINTS: • The detection of apoptosis by non-invasive imaging is important in oncology. • A new low molecular weight probe Zn2+-DPA shows promise in depicting anti-angiogenic effects. • The small Zn2+-DPA ligand appears well suited for monitoring therapy. • Treatment effects are detectable just as early with Zn2+-DPA as with 18F-FDG.


Assuntos
Aminas , Anexina A5 , Apoptose , Indóis/uso terapêutico , Neoplasias Experimentais/diagnóstico , Compostos Organometálicos , Ácidos Picolínicos , Pirróis/uso terapêutico , Neoplasias Cutâneas/diagnóstico , Inibidores da Angiogênese/uso terapêutico , Animais , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Feminino , Fluordesoxiglucose F18 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Sondas Moleculares , Peso Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Sunitinibe , Células Tumorais Cultivadas , Zinco
12.
Invest Radiol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598653

RESUMO

OBJECTIVES: Chronic liver diseases (CLDs) have diverse etiologies. To better classify CLDs, we explored the ability of longitudinal multiparametric MRI (magnetic resonance imaging) in depicting alterations in liver morphology, inflammation, and hepatocyte and macrophage activity in murine high-fat diet (HFD)- and carbon tetrachloride (CCl4)-induced CLD models. MATERIALS AND METHODS: Mice were either untreated, fed an HFD for 24 weeks, or injected with CCl4 for 8 weeks. Longitudinal multiparametric MRI was performed every 4 weeks using a 7 T MRI scanner, including T1/T2 relaxometry, morphological T1/T2-weighted imaging, and fat-selective imaging. Diffusion-weighted imaging was applied to assess fibrotic remodeling and T1-weighted and T2*-weighted dynamic contrast-enhanced MRI and dynamic susceptibility contrast MRI using gadoxetic acid and ferucarbotran to target hepatocytes and the mononuclear phagocyte system, respectively. Imaging data were associated with histopathological and serological analyses. Principal component analysis and clustering were used to reveal underlying disease patterns. RESULTS: The MRI parameters significantly correlated with histologically confirmed steatosis, fibrosis, and liver damage, with varying importance. No single MRI parameter exclusively correlated with 1 pathophysiological feature, underscoring the necessity for using parameter patterns. Clustering revealed early-stage, model-specific patterns. Although the HFD model exhibited pronounced liver fat content and fibrosis, the CCl4 model indicated reduced liver fat content and impaired hepatocyte and macrophage function. In both models, MRI biomarkers of inflammation were elevated. CONCLUSIONS: Multiparametric MRI patterns can be assigned to pathophysiological processes and used for murine CLD classification and progression tracking. These MRI biomarker patterns can directly be explored clinically to improve early CLD detection and differentiation and to refine treatments.

13.
Radiology ; 267(2): 487-95, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23360735

RESUMO

PURPOSE: To investigate the ability of vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted ultrasonographic (US) microbubbles for the assessment of liver dysplasia in transgenic mice. MATERIALS AND METHODS: Animal experiments were approved by the governmental review committee. Nuclear factor-κB essential modulator knock-out mice with liver dysplasia and wild-type mice underwent liver imaging by using a clinical US system. Two types of contrast agents were investigated: nontargeted, commercially available, second-generation microbubbles (SonoVue) and clinically translatable PEGylated VEGFR2-targeted microbubbles (BR55). Microbubble kinetics was investigated over the course of 4 minutes. Targeted contrast material-enhanced US signal was quantified 5 minutes after injection. Competitive in vivo binding experiments with BR55 were performed in knock-out mice. Immunohistochemical and hematoxylin-eosin staining of liver sections was performed to validate the in vivo US results. Groups were compared by using the Mann-Whitney test. RESULTS: Peak enhancement after injection of SonoVue and BR55 did not differ in healthy and dysplastic livers (SonoVue, P = .46; BR55, P = .43). Accordingly, immunohistochemical findings revealed comparable vessel densities in both groups. The specificity of BR55 to VEGFR2 was proved by in vivo competition (P = .0262). While the SonoVue signal decreased similarly in healthy and dysplastic livers during the 4 minutes, there was an accumulation of BR55 in dysplastic livers compared with healthy ones. Furthermore, targeted contrast-enhanced US signal indicated a significantly higher site-specific binding of BR55 in dysplastic than healthy livers (P = .005). Quantitative immunohistologic findings confirmed significantly higher VEGFR2 levels in dysplastic livers (P = .02). CONCLUSION: BR55 enables the distinction of early stages of liver dysplasia from normal liver.


Assuntos
Fígado/diagnóstico por imagem , Animais , Meios de Contraste , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Imagem Molecular , Fosfolipídeos , Sensibilidade e Especificidade , Estatísticas não Paramétricas , Hexafluoreto de Enxofre , Ultrassonografia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Eur Radiol ; 23(2): 468-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22878592

RESUMO

OBJECTIVES: Tumour xenografts of well-discernible sizes can be examined well by molecular ultrasound. Here, we investigated whether very early breast carcinomas express sufficient levels of VEGFR2 for reliable molecular ultrasound imaging with targeted microbubbles. METHODS: MCF-7 breast cancer xenografts were orthotopically implanted in nude mice (n = 26). Tumours measuring from 4 mm(3) (2 mm diameter) up to 65 mm(3) (5 mm diameter) were examined with automated 3D molecular ultrasound using clinically translatable VEGFR2-targeted microbubbles (BR55). Additionally, the relative tumour blood volume was assessed with non-targeted microbubbles (BR38). In vivo ultrasound data were validated by quantitative immunohistochemistry. RESULTS: Very small lesions 2 mm in diameter showed the highest binding of VEGFR2-specific microbubbles. In larger tumours significantly less BR55 accumulated (p = 0.023). Nonetheless, binding of VEGFR2-targeted microbubbles was still high enough for imaging. The relative blood volume was comparable at all tumour sizes. Both findings were confirmed by immunohistochemistry. Additionally, a significantly enhanced number of large and mature vessels were detected with increasing tumour size (p < 0.01), explaining the decrease in VEGFR2 expression during tumour growth. CONCLUSIONS: 3D molecular ultrasound using BR55 is very well suited to depicting the angiogenic activity in very small breast lesions, suggesting its potential for detecting and characterising these lesions.


Assuntos
Detecção Precoce de Câncer/métodos , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Microbolhas , Neovascularização Patológica/diagnóstico por imagem , Ultrassonografia Doppler em Cores/métodos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Meios de Contraste , Modelos Animais de Doenças , Feminino , Glândulas Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Experimentais/patologia , Camundongos , Biologia Molecular , Neovascularização Patológica/metabolismo , Valor Preditivo dos Testes , Distribuição Aleatória , Sensibilidade e Especificidade , Transplante Heterólogo
15.
J Pathol ; 227(1): 17-28, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22262122

RESUMO

Inflammation contributes to tumour growth, invasion and angiogenesis. We investigated the contribution of macrophages and their polarization to tumour progression in a model of VEGF-A-induced skin carcinogenesis. Transfection of the human non-tumourigenic keratinocyte cell line HaCaT with murine VEGF-A leads to malignant tumour growth in vivo. The resulting tumours are characterized by extensive vascularization, invasive growth and high numbers of M2-polarized macrophages that crucially contribute to the establishment of the malignant phenotype. Accordingly, macrophage depletion from tumour-bearing animals resulted in reduced tumour growth, inhibition of invasion, decreased proliferation and reduced angiogenesis. In vitro, VEGF-A exerted a chemo-attracting effect on macrophages, but did not induce M2 polarization. We identified IL-4 and IL-10 as the factors involved in M2 polarization. These factors were produced by tumour cells (IL-10) and macrophages (IL-4) in vivo. Addition of recombinant IL-4 and IL-10 in vitro induced a pro-invasive M2 macrophage phenotype and inhibition of the IL-4 receptor in vivo blocked M2 polarization of macrophages, resulting in a less aggressive tumour phenotype. Thus, we provide evidence that M2 macrophages are crucial for the development of VEGF-A-induced skin tumours and that VEGF-A contributes to malignant tumour growth, not only by enhancing angiogenesis but also by establishing an anti-inflammatory microenvironment. However, VEGF-A alone is not sufficient to create a tumour-promoting microenvironment and requires the presence of IL-4 and IL-10 to induce M2 polarization of macrophages.


Assuntos
Regulação Neoplásica da Expressão Gênica , Macrófagos/patologia , Neoplasias Cutâneas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Células da Medula Óssea/patologia , Linhagem Celular Transformada , Movimento Celular , Modelos Animais de Doenças , Humanos , Imunidade Celular , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Queratinócitos , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Transplante de Neoplasias , Neovascularização Patológica , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Transfecção , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Front Bioinform ; 3: 977228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122998

RESUMO

Dynamic contrast-enhanced (DCE) perfusion imaging has shown great potential to non-invasively assess cancer development and its treatment by their characteristic tissue signatures. Different tracer kinetics models are being applied to estimate tissue and tumor perfusion parameters from DCE perfusion imaging. The goal of this work is to provide an in silico model-based pipeline to evaluate how these DCE imaging parameters may relate to the true tissue parameters. As histology data provides detailed microstructural but not functional parameters, this work can also help to better interpret such data. To this aim in silico vasculatures are constructed and the spread of contrast agent in the tissue is simulated. As a proof of principle we show the evaluation procedure of two tracer kinetic models from in silico contrast-agent perfusion data after a bolus injection. Representative microvascular arterial and venous trees are constructed in silico. Blood flow is computed in the different vessels. Contrast-agent input in the feeding artery, intra-vascular transport, intra-extravascular exchange and diffusion within the interstitial space are modeled. From this spatiotemporal model, intensity maps are computed leading to in silico dynamic perfusion images. Various tumor vascularizations (architecture and function) are studied and show spatiotemporal contrast imaging dynamics characteristic of in vivo tumor morphotypes. The Brix II also called 2CXM, and extended Tofts tracer-kinetics models common in DCE imaging are then applied to recover perfusion parameters that are compared with the ground truth parameters of the in silico spatiotemporal models. The results show that tumor features can be well identified for a certain permeability range. The simulation results in this work indicate that taking into account space explicitly to estimate perfusion parameters may lead to significant improvements in the perfusion interpretation of the current tracer-kinetics models.

17.
Invest Radiol ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038691

RESUMO

OBJECTIVES: Optical fluorescence imaging can track the biodistribution of fluorophore-labeled drugs, nanoparticles, and antibodies longitudinally. In hybrid computed tomography-fluorescence tomography (CT-FLT), CT provides the anatomical information to generate scattering and absorption maps supporting a 3-dimensional reconstruction from the raw optical data. However, given the CT's limited soft tissue contrast, fluorescence reconstruction and quantification can be inaccurate and not sufficiently detailed. Magnetic resonance imaging (MRI) can overcome these limitations and extend the options for tissue characterization. Thus, we aimed to establish a hybrid CT-MRI-FLT approach for whole-body imaging and compared it with CT-FLT. MATERIALS AND METHODS: The MRI-based hybrid imaging approaches were established first by scanning a water and coconut oil-filled phantom, second by quantifying Cy7 concentrations of inserts in dead mice, and finally by analyzing the biodistribution of AF750-labeled immunoglobulins (IgG, IgA) in living SKH1 mice. Magnetic resonance imaging, acquired with a fat-water-separated mDixon sequence, CT, and FLT were co-registered using markers in the mouse holder frame filled with white petrolatum, which was solid, stable, and visible in both modalities. RESULTS: Computed tomography-MRI fusion was confirmed by comparing the segmentation agreement using Dice scores. Phantom segmentations showed good agreement, after correction for gradient linearity distortion and chemical shift. Organ segmentations in dead and living mice revealed adequate agreement for fusion. Marking the mouse holder frame and the successful CT-MRI fusion enabled MRI-FLT as well as CT-MRI-FLT reconstructions. Fluorescence tomography reconstructions supported by CT, MRI, or CT-MRI were comparable in dead mice with 60 pmol fluorescence inserts at different locations. Although standard CT-FLT reconstruction only considered general values for soft tissue, skin, lung, fat, and bone scattering, MRI's more versatile soft tissue contrast enabled the additional consideration of liver, kidneys, and brain. However, this did not change FLT reconstructions and quantifications significantly, whereas for extending scattering maps, it was important to accurately segment the organs and the entire mouse body. The various FLT reconstructions also provided comparable results for the in vivo biodistribution analyses with fluorescent immunoglobulins. However, MRI additionally enabled the visualization of gallbladder, thyroid, and brain. Furthermore, segmentations of liver, spleen, and kidney were more reliable due to better-defined contours than in CT. Therefore, the improved segmentations enabled better assignment of fluorescence signals and more differentiated conclusions with MRI-FLT. CONCLUSIONS: Whole-body CT-MRI-FLT was implemented as a novel trimodal imaging approach, which allowed to more accurately assign fluorescence signals, thereby significantly improving pharmacokinetic analyses.

18.
Eur Radiol ; 22(9): 1955-62, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22544295

RESUMO

OBJECTIVES: To compare mesoscopic epi-fluorescence tomography (MEFT) and EPRI-illumination reflectance imaging (EPRI) for quantitative tumour size assessment in mice. METHODS: Tumour xenografts of green/red fluorescent protein (GFP/RFP)-expressing colon cancer cells were measured using MEFT, EPRI, ultrasound (US) and micro computed tomography (µCT) at day 14 post-injection (n = 6). Results from MEFT and EPRI were correlated with each other and with US and µCT (reference methods). Tumour volumes were measured ex vivo by GFP and RFP fluorescence imaging on cryoslices and compared with the in vivo measurements. RESULTS: High correlation and congruency were observed between MEFT, US and µCT (MEFT/US: GFP: r (2) = 0.96; RFP: r (2) = 0.97, both P < 0.05; MEFT/µCT: GFP: r (2) = 0.93; RFP: r (2) = 0.90; both P < 0.05). Additionally, in vivo MEFT data were highly correlated and congruent with ex vivo cryoslice imaging results (GFP: r (2) = 0.96; RFP: r (2) = 0.99; both P < 0.05). In comparison, EPRI significantly overestimated tumour volumes (P < 0.05), although there was a significant correlation with US and µCT (EPRI/US: GFP: r (2) = 0.95; RFP: r (2) = 0.94; both P < 0.05; EPRI/µCT GFP: r (2) = 0.86; RFP: r (2) = 0.86; both P < 0.05). CONCLUSIONS: Fluorescence distribution reconstruction using MEFT affords highly accurate three-dimensional (3D) tumour volume data showing superior accuracy compared to EPRI. Thus, MEFT is a very suitable technique for quantitatively assessing fluorescence distribution in superficial tumours at high spatial resolution.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas de Fluorescência Verde/metabolismo , Imagem Molecular/métodos , Proteínas de Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Nus , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Mol Imaging Biol ; 24(2): 288-297, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34845660

RESUMO

PURPOSE: Publication numbers reporting that ultrasound can stimulate immune reactions in tumors steadily increase. However, the presented data are partially conflicting, and mechanisms are difficult to identify from single publications. These shortcomings can be addressed by a systematic review and meta-analysis of current literature. As a first step, we here present the methodology and protocol for a systematic review to answer the following research question: Does ultrasound alter the immune reaction of peripheral solid tumors in humans and animals compared to control conditions without ultrasound? PROCEDURES: We designed a protocol to perform a systematic review and meta-analysis. The suitability of the protocol to detect and sort relevant literature was tested using a subset of publications. We extracted study characteristics, ultrasound parameters, and study outcomes to pre-evaluate the differences between publications and present the data as a scoping review. RESULTS: From 6532 publications detected by our preliminary literature search, 320 were selected for testing our systematic review protocol. Of the latter, 15 publications were eligible for data extraction. There, we found large differences between study characteristics (e.g., tumor type, age) and ultrasound settings (e.g., wavelength 0.5-9.5 MHz, acoustic pressure 0.0001-15,000 W/cm2). Finally, study outcomes included reports on cells of the innate (e.g., dendritic cells, macrophages) and adaptive immune system (e.g., CD8-/CD4-positive T cells). CONCLUSION: We designed a protocol to identify relevant literature and perform a systematic review and meta-analysis. The differences between extracted features between publications show the necessity for a comprehensive search and selection strategy in the systematic review to get a complete overview of the literature. Meta-analyses of the extracted outcomes can then enable evidence-based conclusions.


Assuntos
Neoplasias , Humanos , Metanálise como Assunto , Neoplasias/diagnóstico por imagem , Revisões Sistemáticas como Assunto , Ultrassonografia
20.
Int J Cancer ; 128(12): 2803-14, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20726000

RESUMO

Cytokines play a crucial role in tumor initiation and progression. Here, we demonstrate that interleukin (IL)-6 is a key factor by driving tumor progression from benign to malignant, invasive tumors in the HaCaT-model of human skin carcinoma. IL-6 activates STAT3 and directly stimulates proliferation and migration of the benign noninvasive HaCaT-ras A-5 cells in vitro. Furthermore, IL-6 induces a complex, reciprocally regulated cytokine network in the tumor cells that includes inflammatory and angiogenic factors such as IL-8, GM-CSF, VEGF and MCP-1. These IL-6 effects lead to tumor cell invasion in organotypic cultures in vitro and to the formation of malignant and invasive s.c. tumors in vivo. Tumor invasion is supported by the IL-6 induced overexpression of MMP-1 in vitro and in vivo. These data demonstrate a key function of IL-6 in the progression of skin SCCs by regulating a complex cytokine and protease network and suggest new therapeutic approaches to target this central player in skin carcinogenesis.


Assuntos
Carcinoma de Células Escamosas/patologia , Citocinas/fisiologia , Interleucina-6/fisiologia , Neoplasias Cutâneas/patologia , Sequência de Bases , Western Blotting , Proliferação de Células , Primers do DNA , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Hibridização In Situ , Invasividade Neoplásica , Metástase Neoplásica , Fator de Transcrição STAT3/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA