Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(2): 751-760, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469944

RESUMO

PURPOSE: To develop an inline automatic quality control to achieve consistent diagnostic image quality with subject-specific scan time, and to demonstrate this method for 2D phase-contrast flow MRI to reach a predetermined SNR. METHODS: We designed a closed-loop feedback framework between image reconstruction and data acquisition to intermittently check SNR (every 20 s) and automatically stop the acquisition when a target SNR is achieved. A free-breathing 2D pseudo-golden-angle spiral phase-contrast sequence was modified to listen for image-quality messages from the reconstructions. Ten healthy volunteers and 1 patient were imaged at 0.55 T. Target SNR was selected based on retrospective analysis of cardiac output error, and performance of the automatic SNR-driven "stop" was assessed inline. RESULTS: SNR calculation and automated segmentation was feasible within 20 s with inline deployment. The SNR-driven acquisition time was 2 min 39 s ± 67 s (aorta) and 3 min ± 80 s (main pulmonary artery) with a min/max acquisition time of 1 min 43 s/4 min 52 s (aorta) and 1 min 43 s/5 min 50 s (main pulmonary artery) across 6 healthy volunteers, while ensuring a diagnostic measurement with relative absolute error in quantitative flow measurement lower than 2.1% (aorta) and 6.3% (main pulmonary artery). CONCLUSION: The inline quality control enables subject-specific optimized scan times while ensuring consistent diagnostic image quality. The distribution of automated stopping times across the population revealed the value of a subject-specific scan time.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Controle de Qualidade , Razão Sinal-Ruído , Humanos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Imageamento por Ressonância Magnética/métodos , Masculino , Voluntários Saudáveis , Algoritmos , Feminino , Artéria Pulmonar/diagnóstico por imagem , Aorta/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Respiração , Reprodutibilidade dos Testes
2.
Magn Reson Med ; 92(1): 346-360, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38394163

RESUMO

PURPOSE: To introduce alternating current-controlled, conductive ink-printed marker that could be implemented with both custom and commercial interventional devices for device tracking under MRI using gradient echo, balanced SSFP, and turbo spin-echo sequences. METHODS: Tracking markers were designed as solenoid coils and printed on heat shrink tubes using conductive ink. These markers were then placed on three MR-compatible test samples that are typically challenging to visualize during MRI scans. MRI visibility of markers was tested by applying alternating and direct current to the markers, and the effects of applied current parameters (amplitude, frequency) on marker artifacts were tested for three sequences (gradient echo, turbo spin echo, and balanced SSFP) in a gel phantom, using 0.55T and 1.5T MRI scanners. Furthermore, an MR-compatible current supply circuit was designed, and the performance of the current-controlled markers was tested in one postmortem animal experiment using the current supply circuit. RESULTS: Direction and parameters of the applied current were determined to provide the highest conspicuity for all three sequences. Marker artifact size was controlled by adjusting the current amplitude, successfully. Visibility of a custom-designed, 20-gauge nitinol needle was increased in both in vitro and postmortem animal experiments using the current supply circuit. CONCLUSION: Current-controlled conductive ink-printed markers can be placed on custom or commercial MR-compatible interventional tools and can provide an easy and effective solution to device tracking under MRI for three sequences by adjusting the applied current parameters with respect to pulse sequence parameters using the current supply circuit.


Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Animais , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Artefatos , Imagem por Ressonância Magnética Intervencionista/instrumentação
3.
J Cardiovasc Magn Reson ; 26(1): 101009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342406

RESUMO

BACKGROUND: The 12-lead electrocardiogram (ECG) is a standard diagnostic tool for monitoring cardiac ischemia and heart rhythm during cardiac interventional procedures and stress testing. These procedures can benefit from magnetic resonance imaging (MRI) information; however, the MRI scanner magnetic field leads to ECG distortion that limits ECG interpretation. This study evaluated the potential for improved ECG interpretation in a "low field" 0.55T MRI scanner. METHODS: The 12-lead ECGs were recorded inside 0.55T, 1.5T, and 3T MRI scanners, as well as at scanner table "home" position in the fringe field and outside the scanner room (seven pigs). To assess interpretation of ischemic ECG changes in a 0.55T MRI scanner, ECGs were recorded before and after coronary artery occlusion (seven pigs). ECGs was also recorded for five healthy human volunteers in the 0.55T scanner. ECG error and variation were assessed over 2-minute recordings for ECG features relevant to clinical interpretation: the PR interval, QRS interval, J point, and ST segment. RESULTS: ECG error was lower at 0.55T compared to higher field scanners. Only at 0.55T table home position, did the error approach the guideline recommended 0.025 mV ceiling for ECG distortion (median 0.03 mV). At scanner isocenter, only in the 0.55T scanner did J point error fall within the 0.1 mV threshold for detecting myocardial ischemia (median 0.03 mV in pigs and 0.06 mV in healthy volunteers). Correlation of J point deviation inside versus outside the 0.55T scanner following coronary artery occlusion was excellent at scanner table home position (r2 = 0.97), and strong at scanner isocenter (r2 = 0.92). CONCLUSION: ECG distortion is improved in 0.55T compared to 1.5T and 3T MRI scanners. At scanner home position, ECG distortion at 0.55T is low enough that clinical interpretation appears feasible without need for more cumbersome patient repositioning. At 0.55T scanner isocenter, ST segment changes during coronary artery occlusion appear detectable but distortion is enough to obscure subtle ST segment changes that could be clinically relevant. Reduced ECG distortion in 0.55T scanners may simplify the problem of suppressing residual distortion by ECG cable positioning, averaging, and filtering and could reduce current restrictions on ECG monitoring during interventional MRI procedures.


Assuntos
Eletrocardiografia , Frequência Cardíaca , Imageamento por Ressonância Magnética , Valor Preditivo dos Testes , Eletrocardiografia/instrumentação , Animais , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/instrumentação , Masculino , Modelos Animais de Doenças , Potenciais de Ação , Feminino , Fatores de Tempo , Sus scrofa , Artefatos , Adulto , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Oclusão Coronária/diagnóstico por imagem , Oclusão Coronária/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Sistema de Condução Cardíaco/diagnóstico por imagem , Suínos
4.
Magn Reson Med ; 89(2): 845-858, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36198118

RESUMO

PURPOSE: We describe a clinical grade, "active", monopole antenna-based metallic guidewire that has a continuous shaft-to-tip image profile, a pre-shaped tip-curve, standard 0.89 mm (0.035″) outer diameter, and a detachable connector for catheter exchange during cardiovascular catheterization at 0.55T. METHODS: Electromagnetic simulations were performed to characterize the magnetic field around the antenna whip for continuous tip visibility. The active guidewire was manufactured using medical grade materials in an ISO Class 7 cleanroom. RF-induced heating of the active guidewire prototype was tested in one gel phantom per ASTM 2182-19a, alone and in tandem with clinical metal-braided catheters. Real-time MRI visibility was tested in one gel phantom and in-vivo in two swine. Mechanical performance was compared with commercial equivalents. RESULTS: The active guidewire provided continuous "profile" shaft and tip visibility in-vitro and in-vivo, analogous to guidewire shaft-and-tip profiles under X-ray. The MRI signal signature matched simulation results. Maximum unscaled RF-induced temperature rise was 5.2°C and 6.5°C (3.47 W/kg local background specific absorption rate), alone and in tandem with a steel-braided catheter, respectively. Mechanical characteristics matched commercial comparator guidewires. CONCLUSION: The active guidewire was clearly visible via real-time MRI at 0.55T and exhibits a favorable geometric sensitivity profile depicting the guidewire continuously from shaft-to-tip including a unique curved-tip signature. RF-induced heating is clinically acceptable. This design allows safe device navigation through luminal structures and heart chambers. The detachable connector allows delivery and exchange of cardiovascular catheters while maintaining guidewire position. This enhanced guidewire design affords the expected performance of X-ray guidewires during human MRI catheterization.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Suínos , Humanos , Animais , Cateterismo Cardíaco/métodos , Desenho de Equipamento , Cateteres Cardíacos , Imagens de Fantasmas
5.
Magn Reson Med ; 90(4): 1396-1413, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37288601

RESUMO

PURPOSE: Exercise-induced dyspnea caused by lung water is an early heart failure symptom. Dynamic lung water quantification during exercise is therefore of interest to detect early stage disease. This study developed a time-resolved 3D MRI method to quantify transient lung water dynamics during rest and exercise stress. METHODS: The method was evaluated in 15 healthy subjects and 2 patients with heart failure imaged in transitions between rest and exercise, and in a porcine model of dynamic extravascular lung water accumulation through mitral regurgitation (n = 5). Time-resolved images were acquired at 0.55T using a continuous 3D stack-of-spirals proton density weighted sequence with 3.5 mm isotropic resolution, and derived using a motion corrected sliding-window reconstruction with 90-s temporal resolution in 20-s increments. A supine MRI-compatible pedal ergometer was used for exercise. Global and regional lung water density (LWD) and percent change in LWD (ΔLWD) were automatically quantified. RESULTS: A ΔLWD increase of 3.3 ± 1.5% was achieved in the animals. Healthy subjects developed a ΔLWD of 7.8 ± 5.0% during moderate exercise, peaked at 16 ± 6.8% during vigorous exercise, and remained unchanged over 10 min at rest (-1.4 ± 3.5%, p = 0.18). Regional LWD were higher posteriorly compared the anterior lungs (rest: 33 ± 3.7% vs 20 ± 3.1%, p < 0.0001; peak exercise: 36 ± 5.5% vs 25 ± 4.6%, p < 0.0001). Accumulation rates were slower in patients than healthy subjects (2.0 ± 0.1%/min vs 2.6 ± 0.9%/min, respectively), whereas LWD were similar at rest (28 ± 10% and 28 ± 2.9%) and peak exercise (ΔLWD 17 ± 10% vs 16 ± 6.8%). CONCLUSION: Lung water dynamics can be quantified during exercise using continuous 3D MRI and a sliding-window image reconstruction.


Assuntos
Insuficiência Cardíaca , Imageamento por Ressonância Magnética , Animais , Suínos , Pulmão/diagnóstico por imagem , Teste de Esforço
6.
J Cardiovasc Magn Reson ; 25(1): 48, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574552

RESUMO

Transcatheter cardiovascular interventions increasingly rely on advanced imaging. X-ray fluoroscopy provides excellent visualization of catheters and devices, but poor visualization of anatomy. In contrast, magnetic resonance imaging (MRI) provides excellent visualization of anatomy and can generate real-time imaging with frame rates similar to X-ray fluoroscopy. Realization of MRI as a primary imaging modality for cardiovascular interventions has been slow, largely because existing guidewires, catheters and other devices create imaging artifacts and can heat dangerously. Nonetheless, numerous clinical centers have started interventional cardiovascular magnetic resonance (iCMR) programs for invasive hemodynamic studies or electrophysiology procedures to leverage the clear advantages of MRI tissue characterization, to quantify cardiac chamber function and flow, and to avoid ionizing radiation exposure. Clinical implementation of more complex cardiovascular interventions has been challenging because catheters and other tools require re-engineering for safety and conspicuity in the iCMR environment. However, recent innovations in scanner and interventional device technology, in particular availability of high performance low-field MRI scanners could be the inflection point, enabling a new generation of iCMR procedures. In this review we review these technical considerations, summarize contemporary clinical iCMR experience, and consider potential future applications.


Assuntos
Cateterismo Cardíaco , Imagem por Ressonância Magnética Intervencionista , Humanos , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
7.
J Cardiovasc Magn Reson ; 25(1): 1, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642713

RESUMO

BACKGROUND: Left ventricular (LV) contractility and compliance are derived from pressure-volume (PV) loops during dynamic preload reduction, but reliable simultaneous measurements of pressure and volume are challenging with current technologies. We have developed a method to quantify contractility and compliance from PV loops during a dynamic preload reduction using simultaneous measurements of volume from real-time cardiovascular magnetic resonance (CMR) and invasive LV pressures with CMR-specific signal conditioning. METHODS: Dynamic PV loops were derived in 16 swine (n = 7 naïve, n = 6 with aortic banding to increase afterload, n = 3 with ischemic cardiomyopathy) while occluding the inferior vena cava (IVC). Occlusion was performed simultaneously with the acquisition of dynamic LV volume from long-axis real-time CMR at 0.55 T, and recordings of invasive LV and aortic pressures, electrocardiogram, and CMR gradient waveforms. PV loops were derived by synchronizing pressure and volume measurements. Linear regression of end-systolic- and end-diastolic- pressure-volume relationships enabled calculation of contractility. PV loops measurements in the CMR environment were compared to conductance PV loop catheter measurements in 5 animals. Long-axis 2D LV volumes were validated with short-axis-stack images. RESULTS: Simultaneous PV acquisition during IVC-occlusion was feasible. The cardiomyopathy model measured lower contractility (0.2 ± 0.1 mmHg/ml vs 0.6 ± 0.2 mmHg/ml) and increased compliance (12.0 ± 2.1 ml/mmHg vs 4.9 ± 1.1 ml/mmHg) compared to naïve animals. The pressure gradient across the aortic band was not clinically significant (10 ± 6 mmHg). Correspondingly, no differences were found between the naïve and banded pigs. Long-axis and short-axis LV volumes agreed well (difference 8.2 ± 14.5 ml at end-diastole, -2.8 ± 6.5 ml at end-systole). Agreement in contractility and compliance derived from conductance PV loop catheters and in the CMR environment was modest (intraclass correlation coefficient 0.56 and 0.44, respectively). CONCLUSIONS: Dynamic PV loops during a real-time CMR-guided preload reduction can be used to derive quantitative metrics of contractility and compliance, and provided more reliable volumetric measurements than conductance PV loop catheters.


Assuntos
Cateterismo Cardíaco , Isquemia Miocárdica , Suínos , Animais , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Função Ventricular Esquerda , Volume Sistólico
8.
J Cardiovasc Magn Reson ; 24(1): 35, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668497

RESUMO

BACKGROUND: Quantitative assessment of dynamic lung water accumulation is of interest to unmask latent heart failure. We develop and validate a free-breathing 3D ultrashort echo time (UTE) sequence with automated inline image processing to image changes in lung water density (LWD) using high-performance 0.55 T cardiovascular magnetic resonance (CMR). METHODS: Quantitative lung water CMR was performed on 15 healthy subjects using free-breathing 3D stack-of-spirals proton density weighted UTE at 0.55 T. Inline image reconstruction and automated image processing was performed using the Gadgetron framework. A gravity-induced redistribution of LWD was provoked by sequentially acquiring images in the supine, prone, and again supine position. Quantitative validation was performed in a phantom array of vials containing mixtures of water and deuterium oxide. RESULTS: The phantom experiment validated the capability of the sequence in quantifying water density (bias ± SD 4.3 ± 4.8%, intraclass correlation coefficient, ICC = 0.97). The average global LWD was comparable between imaging positions (supine 24.7 ± 3.4%, prone 22.7 ± 3.1%, second supine 25.3 ± 3.6%), with small differences between imaging phases (first supine vs prone 2.0%, p < 0.001; first supine vs second supine - 0.6%, p = 0.001; prone vs second supine - 2.7%, p < 0.001). In vivo test-retest repeatability in LWD was excellent (- 0.17 ± 0.91%, ICC = 0.97). A regional LWD redistribution was observed in all subjects when repositioning, with a predominant posterior LWD accumulation when supine, and anterior accumulation when prone (difference in anterior-posterior LWD: supine - 11.6 ± 2.7%, prone 5.5 ± 2.7%, second supine - 11.4 ± 2.9%). Global LWD maps were calculated inline within 23.2 ± 0.3 s following the image reconstruction using the automated pipeline. CONCLUSIONS: Redistribution of LWD due to gravitational forces can be depicted and quantified using a validated free-breathing 3D proton density weighted UTE sequence and inline automated image processing pipeline on a high-performance 0.55 T CMR system.


Assuntos
Pulmão , Prótons , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes
9.
Magn Reson Med ; 85(5): 2904-2914, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33347642

RESUMO

PURPOSE: This work aims to demonstrate the use of an "active" acousto-optic marker with enhanced visibility and reduced radiofrequency (RF) -induced heating for interventional MRI. METHODS: The acousto-optic marker was fabricated using bulk piezoelectric crystal and π-phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF-induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto-optic markers were characterized in phantom studies. RF-induced heating risk was evaluated according to ASTM 2182 standard. In vivo real-time tracking capability was tested in an animal model under a 0.55T scanner. RESULTS: Signal-to-noise ratio (SNR) levels suitable for real-time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto-optic sensor. RF-induced heating was significantly reduced compared to a coax cable connected reference marker. Real-time distal tip tracking of an active device was demonstrated in an animal model with a standard real-time cardiac MR sequence. CONCLUSION: Acousto-optic markers provide sufficient SNR with a simple structure for real-time device tracking. RF-induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto-optic modulator can be used on a single catheter for determining catheter orientation and shape.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Imageamento por Ressonância Magnética , Animais , Catéteres , Desenho de Equipamento , Imagens de Fantasmas
10.
Magn Reson Med ; 86(3): 1786-1801, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860962

RESUMO

PURPOSE: This work aims to fabricate RF antenna components on metallic needle surfaces using biocompatible polyester tubing and conductive ink to develop an active interventional MRI needle for clinical use at 0.55 Tesla. METHODS: A custom computer numeric control-based conductive ink printing method was developed. Based on electromagnetic simulation results, thin-film RF antennas were printed with conductive ink and used to fabricate a medical grade, 20-gauge (0.87 mm outer diameter), 90-mm long active interventional MRI needle. The MRI visibility performance of the active needle prototype was tested in vitro in 1 gel phantom and in vivo in 1 swine. A nearly identical active needle constructed using a 44 American Wire Gauge insulated copper wire-wound RF receiver antenna was a comparator. The RF-induced heating risk was evaluated in a gel phantom per American Society for Testing and Materials (ASTM) 2182-19. RESULTS: The active needle prototype with printed RF antenna was clearly visible both in vitro and in vivo under MRI. The maximum RF-induced temperature rise of prototypes with printed RF antenna and insulated copper wire antenna after a 3.96 W/kg, 15 min. long scan were 1.64°C and 8.21°C, respectively. The increase in needle diameter was 98 µm and 264 µm for prototypes with printed RF antenna and copper wire-wound antenna, respectively. CONCLUSION: The active needle prototype with conductive ink printed antenna provides distinct device visibility under MRI. Variations on the needle surface are mitigated compared to use of a 44 American Wire Gauge copper wire. RF-induced heating tests support device RF safety under MRI. The proposed method enables fabrication of small diameter active interventional MRI devices having complex geometries, something previously difficult using conventional methods.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Animais , Condutividade Elétrica , Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Suínos , Temperatura
11.
NMR Biomed ; 34(8): e4562, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34080253

RESUMO

The purpose of this study was to evaluate oxygen-enhanced pulmonary imaging at 0.55 T with 3D stack-of-spirals ultrashort-TE (UTE) acquisition. Oxygen-enhanced pulmonary MRI offers the measurement of regional lung ventilation and perfusion using inhaled oxygen as a contrast agent. Low-field MRI systems equipped with contemporary hardware can provide high-quality structural lung imaging by virtue of the prolonged T2 *. Fortuitously, the T1 relaxivity of oxygen increases at lower field strengths, which is expected to improve the sensitivity of oxygen-enhanced lung MRI. We implemented a breath-held T1 -weighted 3D stack-of-spirals UTE acquisition with a 7 ms spiral-out readout. Measurement repeatability was assessed using five repetitions of oxygen-enhanced lung imaging in healthy volunteers (n = 7). The signal intensity at both normoxia and hyperoxia was strongly dependent on lung tissue density modulated by breath-hold volume during the five repetitions. A voxel-wise correction for lung tissue density improved the repeatability of percent signal enhancement maps (coefficient of variation = 34 ± 16%). Percent signal enhancement maps were compared in 15 healthy volunteers and 10 patients with lymphangioleiomyomatosis (LAM), a rare cystic disease known to reduce pulmonary function. We measured a mean percent signal enhancement of 9.0 ± 3.5% at 0.55 T in healthy volunteers, and reduced signal enhancement in patients with LAM (5.4 ± 4.8%, p = 0.02). The heterogeneity, estimated by the percent of lung volume exhibiting low enhancement, was significantly increased in patients with LAM compared with healthy volunteers (11.1 ± 6.0% versus 30.5 ± 13.1%, p = 0.01), illustrating the capability to measure regional functional deficits.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio/química , Adulto , Feminino , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Pulmão/patologia , Linfangioleiomiomatose , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
12.
Catheter Cardiovasc Interv ; 97(3): 555-564, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32902101

RESUMO

OBJECTIVES: The purpose of this study was to describe the feasibility and early outcomes of transcaval access for delivery of emergency mechanical circulatory support (MCS) in cardiogenic shock. BACKGROUND: Vascular access for implantation of MCS in patients with cardiogenic shock is often challenging due to peripheral arterial disease and vasoconstriction. Transcaval delivery of MCS may be an alternative. We describe a series of patients we implanted an Impella 5.0 device, on-table without CT planning, through a percutaneous transcaval access route. METHODS: Ten patients with progressive or refractory cardiogenic shock underwent Impella 5.0 implantation via transcaval access. Demographic, clinical and procedural variables and in-hospital outcomes were collected. RESULTS: All ten underwent emergency implantation of the 7 mm diameter Impella 5.0 device via transcaval access. Six were women, with median age of 55.5 years (range, 29-69). Cardiogenic shock was attributed to idiopathic nonischemic cardiomyopathy (n = 4), myocarditis (n = 2), ischemic cardiomyopathy (n = 2), heart transplant rejection (n = 1), and unknown etiology (n = 1). Median duration of support was 92.1 hr (range, 21.2-165.4). Seven (70%) survived to device explant, with six (60%) surviving to access port closure and discharge. Among survivors, five recovered heart function and one received destination therapy left ventricular assist device. CONCLUSIONS: Transcaval access is feasible for emergency nonsurgical implantation of the Impella 5.0 device in cardiogenic shock with small or diseased iliofemoral arteries. This allows early institution of higher-flow MCS than conventional femoral artery implantation of the 3.5 L Impella CP device, and enables a bridge-to-recovery or bridge-to-destination strategy.


Assuntos
Cardiomiopatias , Coração Auxiliar , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Choque Cardiogênico/diagnóstico , Choque Cardiogênico/etiologia , Choque Cardiogênico/terapia , Resultado do Tratamento
13.
Catheter Cardiovasc Interv ; 97(1): E130-E134, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32385950

RESUMO

OBJECTIVES: We report the first pledget-assisted suture tricuspid annuloplasty (PASTA) in a patient with torrential tricuspid regurgitation (TR). BACKGROUND: Tricuspid valve regurgitation is a common malignant disease with no commercially available transcatheter therapy. PASTA is a "percutaneous surgical" procedure using pledgeted sutures to create a double-orifice tricuspid valve. METHODS: An 83-year-old man had end-stage TR caused by a defibrillator lead. He consented to undergo PASTA on a compassionate basis. A double-orifice valve was created with pledgeted sutures from percutaneous right ventricular apical access. RESULTS: TR was reduced from torrential to trace. The vena contracta reduced to from 23 to 1 mm and annular area reduced from 1817 to 782 mm2 . However, the annulus dehisced and required closure with a percutaneous nitinol plug. The patient was discharged home and was alive 6 months later but with persistent symptoms. CONCLUSIONS: The anatomy of a double-orifice valve can eliminate TR but a better solution is required to avoid excessive suture tension on annular tissue.


Assuntos
Anuloplastia da Valva Cardíaca , Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Tricúspide , Idoso de 80 Anos ou mais , Anuloplastia da Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Humanos , Masculino , Valva Mitral , Suturas , Resultado do Tratamento , Valva Tricúspide/diagnóstico por imagem , Valva Tricúspide/cirurgia , Insuficiência da Valva Tricúspide/diagnóstico por imagem , Insuficiência da Valva Tricúspide/cirurgia
14.
J Cardiovasc Magn Reson ; 23(1): 50, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33952312

RESUMO

PURPOSE: Low-field (0.55 T) high-performance cardiovascular magnetic resonance (CMR) is an attractive platform for CMR-guided intervention as device heating is reduced around 7.5-fold compared to 1.5 T. This work determines the feasibility of visualizing cardiac radiofrequency (RF) ablation lesions at low field CMR and explores a novel alternative method for targeted tissue destruction: acetic acid chemoablation. METHODS: N = 10 swine underwent X-ray fluoroscopy-guided RF ablation (6-7 lesions) and acetic acid chemoablation (2-3 lesions) of the left ventricle. Animals were imaged at 0.55 T with native contrast 3D-navigator gated T1-weighted T1w) CMR for lesion visualization, gated single-shot imaging to determine potential for real-time visualization of lesion formation, and T1 mapping to measure change in T1 in response to ablation. Seven animals were euthanized on ablation day and hearts imaged ex vivo. The remaining animals were imaged again in vivo at 21 days post ablation to observe lesion evolution. RESULTS: Chemoablation lesions could be visualized and displayed much higher contrast than necrotic RF ablation lesions with T1w imaging. On the day of ablation, in vivo myocardial T1 dropped by 19 ± 7% in RF ablation lesion cores, and by 40 ± 7% in chemoablation lesion cores (p < 4e-5). In high resolution ex vivo imaging, with reduced partial volume effects, lesion core T1 dropped by 18 ± 3% and 42 ± 6% for RF and chemoablation, respectively. Mean, median, and peak lesion signal-to-noise ratio (SNR) were all at least 75% higher with chemoablation. Lesion core to myocardium contrast-to-noise (CNR) was 3.8 × higher for chemoablation. Correlation between in vivo and ex vivo CMR and histology indicated that the periphery of RF ablation lesions do not exhibit changes in T1 while the entire extent of chemoablation exhibits T1 changes. Correlation of T1w enhancing lesion volumes indicated in vivo estimates of lesion volume are accurate for chemoablation but underestimate extent of necrosis for RF ablation. CONCLUSION: The visualization of coagulation necrosis from cardiac ablation is feasible using low-field high-performance CMR. Chemoablation produced a more pronounced change in lesion T1 than RF ablation, increasing SNR and CNR and thereby making it easier to visualize in both 3D navigator-gated and real-time CMR and more suitable for low-field imaging.


Assuntos
Ablação por Cateter , Ablação por Radiofrequência , Ácido Acético , Animais , Miocárdio , Valor Preditivo dos Testes , Suínos
15.
Catheter Cardiovasc Interv ; 95(4): 849-850, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159289

RESUMO

BATMAN is a new technique to prevent left ventricular outflow tract (LVOT) obstruction from transcatheter mitral valve replacement (TMVR) by deploying the transcatheter heart valve from the apex through a perforation of the anterior mitral valve leaflet. The risks of uncontrolled balloon dilatation of the anterior mitral valve leaflet include extension of the tear superiorly into the aorto-mitral curtain or laterally to avulse the trigone from the annulus. Percutaneous laceration of the anterior mitral leaflet, pre-emptive alcohol septal ablation, and transatrial leaflet resection are alternative strategies that prevent LVOT obstruction from TMVR.


Assuntos
Implante de Prótese de Valva Cardíaca , Obstrução do Fluxo Ventricular Externo , Cateterismo Cardíaco , Humanos , Valva Mitral/cirurgia , Resultado do Tratamento
16.
Pediatr Cardiol ; 41(3): 503-513, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32198594

RESUMO

In recent years, interventional cardiac magnetic resonance imaging (iCMR) has evolved from attractive theory to clinical routine at several centers. Real-time cardiac magnetic resonance imaging (CMR fluoroscopy) adds value by combining soft-tissue visualization, concurrent hemodynamic measurement, and freedom from radiation. Clinical iCMR applications are expanding because of advances in catheter devices and imaging. In the near future, iCMR promises novel procedures otherwise unsafe under standalone X-Ray guidance.


Assuntos
Cateterismo Cardíaco/métodos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Fluoroscopia/métodos , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Humanos
17.
Radiology ; 293(2): 384-393, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31573398

RESUMO

Background Commercial low-field-strength MRI systems are generally not equipped with state-of-the-art MRI hardware, and are not suitable for demanding imaging techniques. An MRI system was developed that combines low field strength (0.55 T) with high-performance imaging technology. Purpose To evaluate applications of a high-performance low-field-strength MRI system, specifically MRI-guided cardiovascular catheterizations with metallic devices, diagnostic imaging in high-susceptibility regions, and efficient image acquisition strategies. Materials and Methods A commercial 1.5-T MRI system was modified to operate at 0.55 T while maintaining high-performance hardware, shielded gradients (45 mT/m; 200 T/m/sec), and advanced imaging methods. MRI was performed between January 2018 and April 2019. T1, T2, and T2* were measured at 0.55 T; relaxivity of exogenous contrast agents was measured; and clinical applications advantageous at low field were evaluated. Results There were 83 0.55-T MRI examinations performed in study participants (45 women; mean age, 34 years ± 13). On average, T1 was 32% shorter, T2 was 26% longer, and T2* was 40% longer at 0.55 T compared with 1.5 T. Nine metallic interventional devices were found to be intrinsically safe at 0.55 T (<1°C heating) and MRI-guided right heart catheterization was performed in seven study participants with commercial metallic guidewires. Compared with 1.5 T, reduced image distortion was shown in lungs, upper airway, cranial sinuses, and intestines because of improved field homogeneity. Oxygen inhalation generated lung signal enhancement of 19% ± 11 (standard deviation) at 0.55 T compared with 7.6% ± 6.3 at 1.5 T (P = .02; five participants) because of the increased T1 relaxivity of oxygen (4.7e-4 mmHg-1sec-1). Efficient spiral image acquisitions were amenable to low field strength and generated increased signal-to-noise ratio compared with Cartesian acquisitions (P < .02). Representative imaging of the brain, spine, abdomen, and heart generated good image quality with this system. Conclusion This initial study suggests that high-performance low-field-strength MRI offers advantages for MRI-guided catheterizations with metal devices, MRI in high-susceptibility regions, and efficient imaging. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Grist in this issue.


Assuntos
Cateterismo , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Adulto , Artefatos , Cateterismo Cardíaco/instrumentação , Meios de Contraste , Desenho de Equipamento , Feminino , Humanos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Metais , Razão Sinal-Ruído
18.
Catheter Cardiovasc Interv ; 94(3): 399-408, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31062506

RESUMO

OBJECTIVES: To determine whether X-ray fused with MRI (XFM) is beneficial for select transcatheter congenital heart disease interventions. BACKGROUND: Complex transcatheter interventions often require three-dimensional (3D) soft tissue imaging guidance. Fusion imaging with live X-ray fluoroscopy can potentially improve and simplify procedures. METHODS: Patients referred for select congenital heart disease interventions were prospectively enrolled. Cardiac MRI data was overlaid on live fluoroscopy for procedural guidance. Likert scale operator assessments of value were recorded. Fluoroscopy time, radiation exposure, contrast dose, and procedure time were compared to matched cases from our institutional experience. RESULTS: Forty-six patients were enrolled. Pre-catheterization, same day cardiac MRI findings indicated intervention should be deferred in nine patients. XFM-guided cardiac catheterization was performed in 37 (median age 8.7 years [0.5-63 years]; median weight 28 kg [5.6-110 kg]) with the following prespecified indications: pulmonary artery (PA) stenosis (n = 13), aortic coarctation (n = 12), conduit stenosis/insufficiency (n = 9), and ventricular septal defect (n = 3). Diagnostic catheterization showed intervention was not indicated in 12 additional cases. XFM-guided intervention was performed in the remaining 25. Fluoroscopy time was shorter for XFM-guided intervention cases compared to matched controls. There was no significant difference in radiation dose area product, contrast volume, or procedure time. Operator Likert scores indicated XFM provided useful soft tissue guidance in all cases and was never misleading. CONCLUSIONS: XFM provides operators with meaningful three-dimensional soft tissue data and reduces fluoroscopy time in select congenital heart disease interventions.


Assuntos
Cateterismo Cardíaco , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/terapia , Imageamento por Ressonância Magnética , Radiografia Intervencionista , Adolescente , Adulto , Cateterismo Cardíaco/efeitos adversos , Criança , Pré-Escolar , Tomada de Decisão Clínica , Meios de Contraste/administração & dosagem , Feminino , Fluoroscopia , Humanos , Lactente , Imageamento por Ressonância Magnética/efeitos adversos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Seleção de Pacientes , Valor Preditivo dos Testes , Estudos Prospectivos , Doses de Radiação , Exposição à Radiação , Radiografia Intervencionista/efeitos adversos , Fatores de Risco , Resultado do Tratamento , Adulto Jovem
19.
J Cardiovasc Magn Reson ; 21(1): 16, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30841903

RESUMO

BACKGROUND: Catheter designs incorporating metallic braiding have high torque control and kink resistance compared with unbraided alternatives. However, metallic segments longer than a quarter wavelength (~ 12 cm for 1.5 T scanner) are prone to radiofrequency (RF) induced heating during cardiovascular magnetic resonance (CMR) catheterization. We designed a braid-reinforced catheter with interrupted metallic segments to mitigate RF-induced heating yet retain expected mechanical properties for CMR catheterization. METHODS: We constructed metal wire braided 6 Fr catheter shaft subassemblies using electrically insulated stainless-steel wires and off-the-shelf biocompatible polymers. The braiding was segmented, in-situ, using lasers to create non-resonant wire lengths. We compared the heating and mechanical performance of segmented- with un-segmented- metal braided catheter shaft subassemblies. RESULTS: The braiding segmentation procedure did not significantly alter the structural integrity of catheter subassemblies, torque response, push-ability, or kink resistance compared with non-segmented controls. Segmentation shortened the electrical length of individually insulated metallic braids, and therefore inhibited resonance during CMR RF excitation. RF-induced heating was reduced below 2 °C under expected use conditions in vitro. CONCLUSION: We describe a simple modification to the manufacture of metallic braided catheters that will allow CMR catheterization without RF-induced heating under contemporary scanning conditions at 1.5 T. The proposed segmentation pattern largely preserves braid structure and mechanical integrity while interrupting electrical resonance. This inexpensive design may be applicable to both diagnostic and interventional catheters and will help to enable a range of interventional procedures using real time CMR.


Assuntos
Materiais Biocompatíveis , Cateterismo Cardíaco/instrumentação , Cateteres Cardíacos , Temperatura Alta , Imagem por Ressonância Magnética Intervencionista/instrumentação , Aço Inoxidável , Animais , Desenho de Equipamento , Falha de Equipamento , Teste de Materiais , Modelos Animais , Estresse Mecânico , Suínos , Porco Miniatura , Torque
20.
Catheter Cardiovasc Interv ; 91(1): 157-158, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29314639

RESUMO

Axillary arteries are less calcified and tortuous than iliofemoral arteries Axillary artery minimal luminal diameters are usually >5.0 mm even in patients with iliofemoral artery diameters < 5.0 mm Axillary and transcaval access are the only non-surgical fully percutaneous options for large-bore arterial access for TAVR or mechanical circulatory support devices.


Assuntos
Artéria Axilar , Substituição da Valva Aórtica Transcateter , Estenose da Valva Aórtica/cirurgia , Artéria Femoral , Humanos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA