Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stroke ; 52(2): 687-698, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33412903

RESUMO

BACKGROUND AND PURPOSE: Stroke disrupts neuronal functions in both local and remotely connected regions, leading to network-wide deficits that can hinder recovery. The thalamus is particularly affected, with progressive development of neurodegeneration accompanied by inflammatory responses. However, the complexity of the involved inflammatory responses is poorly understood. Herein we investigated the spatiotemporal changes in the secondary degenerative thalamus after cortical stroke, using targeted transcriptome approach in conjunction with histology and flow cytometry. METHODS: Cortical ischemic stroke was generated by permanent occlusion of the left middle cerebral artery in male C57BL6J mice. Neurodegeneration, neuroinflammatory responses, and microglial activation were examined in naive and stroke mice at from poststroke days (PD) 1 to 84, in both ipsilesional somatosensory cortex and ipsilesional thalamus. NanoString neuropathology panel (780 genes) was used to examine transcriptome changes at PD7 and PD28. Fluorescence activated cell sorting was used to collect CD11c+ microglia from ipsilesional thalamus, and gene expressions were validated by quantitative real-time polymerase chain reaction. RESULTS: Neurodegeneration in the thalamus was detected at PD7 and progressively worsened by PD28. This was accompanied by rapid microglial activation detected as early as PD1, which preceded the neurodegenerative changes. Transcriptome analysis showed higher number of differentially expressed genes in ipsilesional thalamus at PD28. Notably, neuroinflammation was the top activated pathway, and microglia was the most enriched cell type. Itgax (CD11c) was the most significantly increased gene, and its expression was highly detected in microglia. Flow-sorted CD11c+ microglia from degenerative thalamus indicated molecular signatures similar to neurodegenerative disease-associated microglia; these included downregulated Tmem119 and CX3CR1 and upregulated ApoE, Axl, LpL, CSF1, and Cst7. CONCLUSIONS: Our findings demonstrate the dynamic changes of microglia after stroke and highlight the importance of investigating stroke network-wide deficits. Importantly, we report the existence of a unique subtype of microglia (CD11c+) with neurodegenerative disease-associated microglia features in the degenerative thalamus after stroke.


Assuntos
Córtex Cerebral/patologia , Microglia/patologia , Doenças Neurodegenerativas/patologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Doenças Talâmicas/etiologia , Doenças Talâmicas/patologia , Animais , Antígenos CD11/química , Circulação Cerebrovascular , Encefalite/patologia , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Somatossensorial/patologia , Tálamo/patologia , Transcriptoma
2.
J Pediatr Hematol Oncol ; 43(6): e808-e811, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815876

RESUMO

Overlapping myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal hematopoietic disorders with features of myelodysplasia and myeloproliferation. The only well-characterized MDS/MPN in children is juvenile myelomonocytic leukemia, an aggressive disorder of infants and toddlers. The biochemical hallmark of this disease is hyperactivation of the Ras/MAPK signaling pathway caused by mutations in Ras pathway genes in more than 90% of patients. Translocations involving receptor tyrosine kinases have been identified in rare cases. Here, we report a 2-year-old patient who presented with MDS/MPN driven by a cytogenetically cryptic NUP98-NSD1 fusion, a translocation thought to exclusively occur in patients with acute myeloid leukemia.


Assuntos
Leucemia Mielomonocítica Juvenil/genética , Doenças Mieloproliferativas-Mielodisplásicas/genética , Proteínas de Fusão Oncogênica/genética , Pré-Escolar , Citogenética , Feminino , Humanos , Leucemia Mielomonocítica Juvenil/diagnóstico , Doenças Mieloproliferativas-Mielodisplásicas/diagnóstico , Translocação Genética
3.
Stroke ; 49(9): 2191-2199, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30354987

RESUMO

Background and Purpose- Many restorative therapies have been used to study brain repair after stroke. These therapeutic-induced changes have revealed important insights on brain repair and recovery mechanisms; however, the intrinsic changes that occur in spontaneously recovery after stroke is less clear. The goal of this study is to elucidate the intrinsic changes in spontaneous recovery after stroke, by directly investigating the transcriptome of primary motor cortex in mice that naturally recovered after stroke. Methods- Male C57BL/6J mice were subjected to transient middle cerebral artery occlusion. Functional recovery was evaluated using the horizontal rotating beam test. A novel in-depth lesion mapping analysis was used to evaluate infarct size and locations. Ipsilesional and contralesional primary motor cortices (iM1 and cM1) were processed for RNA-sequencing transcriptome analysis. Results- Cluster analysis of the stroke mice behavior performance revealed 2 distinct recovery groups: a spontaneously recovered and a nonrecovered group. Both groups showed similar lesion profile, despite their differential recovery outcome. RNA-sequencing transcriptome analysis revealed distinct biological pathways in the spontaneously recovered stroke mice, in both iM1 and cM1. Correlation analysis revealed that 38 genes in the iM1 were significantly correlated with improved recovery, whereas 74 genes were correlated in the cM1. In particular, ingenuity pathway analysis highlighted the involvement of cAMP signaling in the cM1, with selective reduction of Adora2a (adenosine receptor A2A), Drd2 (dopamine receptor D2), and Pde10a (phosphodiesterase 10A) expression in recovered mice. Interestingly, the expressions of these genes in cM1 were negatively correlated with behavioral recovery. Conclusions- Our RNA-sequencing data revealed a panel of recovery-related genes in the motor cortex of spontaneously recovered stroke mice and highlighted the involvement of contralesional cortex in spontaneous recovery, particularly Adora2a, Drd2, and Pde10a-mediated cAMP signaling pathway. Developing drugs targeting these candidates after stroke may provide beneficial recovery outcome.


Assuntos
Infarto da Artéria Cerebral Média/genética , Córtex Motor/metabolismo , RNA Mensageiro/metabolismo , Recuperação de Função Fisiológica/genética , Animais , Análise por Conglomerados , AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Imageamento por Ressonância Magnética , Camundongos , Córtex Motor/diagnóstico por imagem , Córtex Motor/patologia , Córtex Motor/fisiopatologia , Diester Fosfórico Hidrolases/genética , Receptor A2A de Adenosina/genética , Receptores de Dopamina D2/genética , Receptores de Prostaglandina E Subtipo EP4/genética , Remissão Espontânea , Análise de Sequência de RNA , Transdução de Sinais , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
4.
Proc Natl Acad Sci U S A ; 111(35): 12913-8, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136109

RESUMO

Clinical and research efforts have focused on promoting functional recovery after stroke. Brain stimulation strategies are particularly promising because they allow direct manipulation of the target area's excitability. However, elucidating the cell type and mechanisms mediating recovery has been difficult because existing stimulation techniques nonspecifically target all cell types near the stimulated site. To circumvent these barriers, we used optogenetics to selectively activate neurons that express channelrhodopsin 2 and demonstrated that selective neuronal stimulations in the ipsilesional primary motor cortex (iM1) can promote functional recovery. Stroke mice that received repeated neuronal stimulations exhibited significant improvement in cerebral blood flow and the neurovascular coupling response, as well as increased expression of activity-dependent neurotrophins in the contralesional cortex, including brain-derived neurotrophic factor, nerve growth factor, and neurotrophin 3. Western analysis also indicated that stimulated mice exhibited a significant increase in the expression of a plasticity marker growth-associated protein 43. Moreover, iM1 neuronal stimulations promoted functional recovery, as stimulated stroke mice showed faster weight gain and performed significantly better in sensory-motor behavior tests. Interestingly, stimulations in normal nonstroke mice did not alter motor behavior or neurotrophin expression, suggesting that the prorecovery effect of selective neuronal stimulations is dependent on the poststroke environment. These results demonstrate that stimulation of neurons in the stroke hemisphere is sufficient to promote recovery.


Assuntos
Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/terapia , Terapia a Laser/métodos , Estimulação Luminosa/métodos , Recuperação de Função Fisiológica/fisiologia , Animais , Proteínas de Bactérias/genética , Comportamento Animal/fisiologia , Circulação Cerebrovascular/fisiologia , Circulação Cerebrovascular/efeitos da radiação , Channelrhodopsins , Corpo Estriado/fisiologia , Corpo Estriado/efeitos da radiação , Modelos Animais de Doenças , Proteína GAP-43/genética , Halorrodopsinas/fisiologia , Luz , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Córtex Motor/fisiopatologia , Córtex Motor/efeitos da radiação , Fator de Crescimento Neural/genética , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos da radiação , Fibras Ópticas , Recuperação de Função Fisiológica/efeitos da radiação , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/efeitos da radiação
5.
Neurobiol Learn Mem ; 131: 95-100, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27003116

RESUMO

Intermittent mildly stressful situations provide opportunities to learn, practice, and improve coping with gains in subsequent emotion regulation. Here we investigate the effects of learning to cope with stress on anterior cingulate cortex gene expression in monkeys and mice. Anterior cingulate cortex is involved in learning, memory, cognitive control, and emotion regulation. Monkeys and mice were randomized to either stress coping or no-stress treatment conditions. Profiles of gene expression were acquired with HumanHT-12v4.0 Expression BeadChip arrays adapted for monkeys. Three genes identified in monkeys by arrays were then assessed in mice by quantitative real-time polymerase chain reaction. Expression of a key gene (PEMT) involved in acetylcholine biosynthesis was increased in monkeys by coping but this result was not verified in mice. Another gene (SPRY2) that encodes a negative regulator of neurotrophic factor signaling was decreased in monkeys by coping but this result was only partly verified in mice. The CACNG2 gene that encodes stargazin (also called TARP gamma-2) was increased by coping in monkeys as well as mice randomized to coping with or without subsequent behavioral tests of emotionality. As evidence of coping effects distinct from repeated stress exposures per se, increased stargazin expression induced by coping correlated with diminished emotionality in mice. Stargazin modulates glutamate receptor signaling and plays a role in synaptic plasticity. Molecular mechanisms of synaptic plasticity that mediate learning and memory in the context of coping with stress may provide novel targets for new treatments of disorders in human mental health.


Assuntos
Adaptação Psicológica/fisiologia , Canais de Cálcio/metabolismo , Expressão Gênica/fisiologia , Giro do Cíngulo/metabolismo , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Estresse Psicológico/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Saimiri
6.
Proc Natl Acad Sci U S A ; 109(14): 5475-80, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431614

RESUMO

Stroke causes brain dysfunction and neuron death, and the lack of effective therapies heightens the need for new therapeutic targets. Here we identify prokineticin 2 (PK2) as a mediator for cerebral ischemic injury. PK2 is a bioactive peptide initially discovered as a regulator of gastrointestinal motility. Multiple biological roles for PK2 have been discovered, including circadian rhythms, angiogenesis, and neurogenesis. However, the role of PK2 in neuropathology is unknown. Using primary cortical cultures, we found that PK2 mRNA is up-regulated by several pathological stressors, including hypoxia, reactive oxygen species, and excitotoxic glutamate. Glutamate-induced PK2 expression is dependent on NMDA receptor activation and extracellular calcium. Enriched neuronal culture studies revealed that neurons are the principal source of glutamate-induced PK2. Using in vivo models of stroke, we found that PK2 mRNA is induced in the ischemic cortex and striatum. Central delivery of PK2 worsens infarct volume, whereas PK2 receptor antagonist decreases infarct volume and central inflammation while improving functional outcome. Direct central inhibition of PK2 using RNAi also reduces infarct volume. These findings indicate that PK2 can be activated by pathological stimuli such as hypoxia-ischemia and excitotoxic glutamate and identify PK2 as a deleterious mediator for cerebral ischemia.


Assuntos
Isquemia Encefálica/fisiopatologia , Hormônios Gastrointestinais/fisiologia , Neuropeptídeos/fisiologia , Animais , Hormônios Gastrointestinais/genética , Neuropeptídeos/genética , RNA Mensageiro/genética , Ratos , Regulação para Cima
7.
Transl Stroke Res ; 15(2): 399-408, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-36745304

RESUMO

Moyamoya disease (MMD) is characterized by progressive occlusion of the intracranial internal carotid arteries, leading to ischemic and hemorrhagic events. Significant clinical differences exist between ischemic and hemorrhagic MMD. To understand the molecular profiles in the cerebrospinal fluid (CSF) of MMD patients, we investigated 62 secreted factors in both MMD subtypes (ischemic and hemorrhagic) and examined their relationship with preoperative perfusion status, the extent of postoperative angiographic revascularization, and functional outcomes. Intraoperative CSF was collected from 32 control and 71 MMD patients (37 ischemic and 34 hemorrhagic). Multiplex Luminex assay analysis showed that 41 molecules were significantly elevated in both MMD subtypes when compared to controls, including platelet-derived growth factor-BB (PDGF-BB), plasminogen activator inhibitor 1 (PAI-1), and intercellular adhesion molecule 1 (ICAM1) (p < 0.001). Many of these secreted proteins have not been previously reported in MMD, including interleukins (IL-2, IL-4, IL-5, IL-7, IL-8, IL-9, IL-17, IL-18, IL-22, and IL-23) and C-X-C motif chemokines (CXCL1 and CXCL9). Pathway analysis indicated that both MMD subtypes exhibited similar cellular/molecular functions and pathways, including cellular activation, migration, and inflammatory response. While neuroinflammation and dendritic cell pathways were activated in MMD patients, lipid signaling pathways involving nuclear receptors, peroxisome proliferator-activated receptor (PPAR), and liver X receptors (LXR)/retinoid X receptors (RXR) signaling were inhibited. IL-13 and IL-2 were negatively correlated with preoperative cerebral perfusion status, while 7 factors were positively correlated with the extent of postoperative revascularization. These elevated cytokines, chemokines, and growth factors in CSF may contribute to the pathogenesis of MMD and represent potential future therapeutic targets.


Assuntos
Doença de Moyamoya , Humanos , Doença de Moyamoya/cirurgia , Interleucina-2 , Citocinas , Quimiocinas
8.
Cancer Discov ; : OF1-OF9, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38867349

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a hematologic malignancy of young children caused by mutations that increase Ras signaling output. Hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment, but patients with relapsed or refractory (advanced) disease have dismal outcomes. This phase II trial evaluated the safety and efficacy of trametinib, an oral MEK1/2 inhibitor, in patients with advanced JMML. Ten infants and children were enrolled, and the objective response rate was 50%. Four patients with refractory disease proceeded to HSCT after receiving trametinib. Three additional patients completed all 12 cycles permitted on study and continue to receive off-protocol trametinib without HSCT. The remaining three patients had progressive disease with two demonstrating molecular evolution by the end of cycle 2. Transcriptomic and proteomic analyses provided novel insights into the mechanisms of response and resistance to trametinib in JMML. ClinicalTrials.gov Identifier: NCT03190915. Significance: Trametinib was safe and effective in young children with relapsed or refractory JMML, a lethal disease with poor survival rates. Seven of 10 patients completed the maximum 12 cycles of therapy or used trametinib as a bridge to HSCT and are alive with a median follow-up of 24 months.

9.
Clin Cancer Res ; 30(4): 849-864, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-37703185

RESUMO

PURPOSE: Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, multiple models are needed to fully elucidate key aspects of disease biology and to recapitulate clinically relevant phenotypes. EXPERIMENTAL DESIGN: Matched patient samples, patient-derived xenografts (PDX), and PDX-derived cell lines were comprehensively evaluated using whole-genome sequencing and RNA sequencing. The in vivo metastatic phenotype of the PDX-derived cell lines was characterized in both an intravenous and an orthotopic murine model. As a proof-of-concept study, we tested the preclinical effectiveness of a cyclin-dependent kinase inhibitor on the growth of metastatic tumors in an orthotopic amputation model. RESULTS: PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication in a subset of cell lines. The cell lines were heterogeneous in their metastatic capacity, and heterogeneous tissue tropism was observed in both intravenous and orthotopic models. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden. CONCLUSIONS: The variation in metastasis predilection sites between osteosarcoma PDX-derived cell lines demonstrates their ability to recapitulate the spectrum of the disease observed in patients. We describe here a panel of new osteosarcoma PDX-derived cell lines that we believe will be of wide use to the osteosarcoma research community.


Assuntos
Neoplasias Ósseas , Óxidos N-Cíclicos , Indolizinas , Osteossarcoma , Compostos de Piridínio , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ensaios Antitumorais Modelo de Xenoenxerto , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo
10.
Proc Natl Acad Sci U S A ; 107(33): 14823-7, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20675584

RESUMO

Coping with intermittent social stress is an essential aspect of living in complex social environments. Coping tends to counteract the deleterious effects of stress and is thought to induce neuroadaptations in corticolimbic brain systems. Here we test this hypothesis in adult squirrel monkey males exposed to intermittent social separations and new pair formations. These manipulations simulate conditions that typically occur in male social associations because of competition for limited access to residency in mixed-sex groups. As evidence of coping, we previously confirmed that cortisol levels initially increase and then are restored to prestress levels within several days of each separation and new pair formation. Follow-up studies with exogenous cortisol further established that feedback regulation of the hypothalamic-pituitary-adrenal axis is not impaired. Now we report that exposure to intermittent social separations and new pair formations increased hippocampal neurogenesis in squirrel monkey males. Hippocampal neurogenesis in rodents contributes to spatial learning performance, and in monkeys we found that spatial learning was enhanced in conditions that increased hippocampal neurogenesis. Corresponding changes were discerned in the expression of genes involved in survival and integration of adult-born granule cells into hippocampal neural circuits. These findings support recent indications that stress coping stimulates hippocampal neurogenesis in adult rodents. Psychotherapies designed to promote stress coping potentially have similar effects in humans with major depression.


Assuntos
Adaptação Psicológica/fisiologia , Hipocampo/crescimento & desenvolvimento , Neurogênese/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/citologia , Hipocampo/metabolismo , Hidrocortisona/análise , Hibridização In Situ , Aprendizagem/fisiologia , Masculino , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Saimiri , Comportamento Social
11.
Nat Commun ; 14(1): 3966, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407562

RESUMO

KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Estimuladoras de Ligação a CCAAT , Neoplasias Pulmonares , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Transformação Celular Neoplásica/genética , Metilação de DNA , Epigênese Genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Cell Rep ; 42(4): 112353, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043353

RESUMO

Stem cell therapy shows promise for multiple disorders; however, the molecular crosstalk between grafted cells and host tissue is largely unknown. Here, we take a step toward addressing this question. Using translating ribosome affinity purification (TRAP) with sequencing tools, we simultaneously decode the transcriptomes of graft and host for human neural stem cells (hNSCs) transplanted into the stroke-injured rat brain. Employing pathway analysis tools, we investigate the interactions between the two transcriptomes to predict molecular pathways linking host and graft genes; as proof of concept, we predict host-secreted factors that signal to the graft and the downstream molecular cascades they trigger in the graft. We identify a potential host-graft crosstalk pathway where BMP6 from the stroke-injured brain induces graft secretion of noggin, a known brain repair factor. Decoding the molecular interplay between graft and host is a critical step toward deciphering the molecular mechanisms of stem cell action.


Assuntos
Células-Tronco Neurais , Acidente Vascular Cerebral , Ratos , Animais , Humanos , Encéfalo , Acidente Vascular Cerebral/terapia , Transplante de Células-Tronco , Diferenciação Celular
13.
Cancer Rep (Hoboken) ; 6(12): e1901, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37933765

RESUMO

BACKGROUND: The development of tyrosine kinase inhibitors (TKIs) has significantly improved survival rates among patients with Philadelphia chromosome (Ph+) B cell acute lymphoblastic leukemia (B-ALL). Ph-like B-ALL patients lack the BCR::ABL1 translocation but share gene expression profiles with Ph+ B-ALL. The role of TKIs for Ph-like patients pre- and post-hematopoietic stem cell transplantation (HSCT) is not yet clear. CASE: Here we present five cases of pediatric, adolescent, and young adult patients who presented with Ph-like B-ALL or CML in B-ALL blast phase who were treated with personalized TKI regimens pre- and post-HSCT. CONCLUSION: This report describes several novel Ph-like fusions as well as combinations of TKIs with chemotherapy or immunotherapy not yet reported in the pediatric population. This case series provides real-world experience highlighting the potential application of pre- and post-HSCT use of TKIs in a subset of patients with targetable fusions.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Adolescente , Adulto Jovem , Inibidores de Proteínas Quinases/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
14.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711882

RESUMO

Models to study metastatic disease in rare cancers are needed to advance preclinical therapeutics and to gain insight into disease biology, especially for highly aggressive cancers with a propensity for metastatic spread. Osteosarcoma is a rare cancer with a complex genomic landscape in which outcomes for patients with metastatic disease are poor. As osteosarcoma genomes are highly heterogeneous, a large panel of models is needed to fully elucidate key aspects of disease biology and to recapitulate clinically-relevant phenotypes. We describe the development and characterization of osteosarcoma patient-derived xenografts (PDXs) and a panel of PDX-derived cell lines. Matched patient samples, PDXs, and PDX-derived cell lines were comprehensively evaluated using whole genome sequencing and RNA sequencing. PDXs and PDX-derived cell lines largely maintained the expression profiles of the patient from which they were derived despite the emergence of whole-genome duplication (WGD) in a subset of cell lines. These cell line models were heterogeneous in their metastatic capacity and their tissue tropism as observed in both intravenous and orthotopic models. As proof-of-concept study, we used one of these models to test the preclinical effectiveness of a CDK inhibitor on the growth of metastatic tumors in an orthotopic amputation model. Single-agent dinaciclib was effective at dramatically reducing the metastatic burden in this model.

15.
Adv Healthc Mater ; 11(17): e2200768, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35767377

RESUMO

Osteosarcoma (OS) is an aggressive bone cancer for which survival has not improved over three decades. While biomaterials have been widely used to engineer 3D soft-tissue tumor models, the potential of engineering 3D biomaterials-based OS models for comprehensive interrogation of OS pathology and drug discovery remains untapped. Bone is characterized by high mineral content, yet the role of bone mineral in OS progression and drug response remains unknown. Here, a microribbon-based OS model with bone-mimicking compositions is developed to elucidate the role of 3D culture and hydroxyapatite in OS signaling and drug response. The results reveal that hydroxyapatite in 3D is critical to support retention of OS signaling and drug resistance similar to patient tissues and mouse orthotopic tumors. The physiological relevance of this 3D model is validated using four established OS cell lines, seven patient-derived xenograft (PDX) cell lines and two animal models. Integrating 3D OS PDX models with RNA-sequencing identified 3D-specific druggable target, which predicts drug response in mouse orthotopic model. These results establish microribbon-based 3D OS models as a novel experimental tool to enable discovery of novel therapeutics that would be otherwise missed with 2D model and may serve as platforms to study patient-specific OS heterogeneity and drug resistance mechanisms.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Materiais Biocompatíveis , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sinais (Psicologia) , Descoberta de Drogas , Humanos , Hidroxiapatitas , Camundongos , Minerais , Osteossarcoma/patologia
16.
Nat Commun ; 13(1): 1366, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292643

RESUMO

Stroke is a leading cause of long-term disability worldwide, intensifying the need for effective recovery therapies. Stem cells are a promising stroke therapeutic, but creating ideal conditions for treatment is essential. Here we developed a conductive polymer system for stem cell delivery and electrical modulation in animals. Using this system, electrical modulation of human stem cell transplants improve functional stroke recovery in rodents. Increased endogenous stem cell production corresponds with improved function. Transcriptome analysis identified stanniocalcin 2 (STC2) as one of the genes most significantly upregulated by electrical stimulation. Lentiviral upregulation and downregulation of STC2 in the transplanted stem cells demonstrate that this glycoprotein is an essential mediator in the functional improvements seen with electrical modulation. Moreover, intraventricular administration of recombinant STC2 post-stroke confers functional benefits. In summation, our conductive polymer system enables electrical modulation of stem cells as a potential method to improve recovery and identify important therapeutic targets.


Assuntos
Roedores , Acidente Vascular Cerebral , Animais , Recuperação de Função Fisiológica/fisiologia , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/terapia
17.
Biol Lett ; 7(4): 584-7, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21411453

RESUMO

Oxytocin is widely believed to be present and structurally identical in all placental mammals. Here, we report that multiple species of New World monkeys possess a novel form of oxytocin, [P8] oxytocin. This mutation arises from a substitution of a leucine to a proline in amino acid position 8. Further analysis of this mutation in Saimiri sciureus (squirrel monkey) indicates that [P8] oxytocin is transcribed and translated properly. This mutation is specific to oxytocin, as the peptide sequence for arginine vasopressin, a structurally related nonapeptide, is unaltered. These findings dispel the notion that all placental mammals possess a 'universal' oxytocin sequence, and highlight the need for research on the functional significance of this novel nonapeptide in New World monkeys.


Assuntos
Mutação , Ocitocina/genética , Platirrinos/genética , Sequência de Aminoácidos , Animais , Arginina Vasopressina/genética , Dados de Sequência Molecular , Ocitocina/química
18.
J Clin Invest ; 130(4): 1879-1895, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874105

RESUMO

Few therapies are currently available for patients with KRAS-driven cancers, highlighting the need to identify new molecular targets that modulate central downstream effector pathways. Here we found that the microRNA (miRNA) cluster including miR181ab1 is a key modulator of KRAS-driven oncogenesis. Ablation of Mir181ab1 in genetically engineered mouse models of Kras-driven lung and pancreatic cancer was deleterious to tumor initiation and progression. Expression of both resident miRNAs in the Mir181ab1 cluster, miR181a1 and miR181b1, was necessary to rescue the Mir181ab1-loss phenotype, underscoring their nonredundant role. In human cancer cells, depletion of miR181ab1 impaired proliferation and 3D growth, whereas overexpression provided a proliferative advantage. Lastly, we unveiled miR181ab1-regulated genes responsible for this phenotype. These studies identified what we believe to be a previously unknown role for miR181ab1 as a potential therapeutic target in 2 highly aggressive and difficult to treat KRAS-mutated cancers.


Assuntos
Carcinogênese/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Família Multigênica , Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Neoplásico/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Neoplasias Experimentais/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Neoplásico/genética
19.
Nat Med ; 25(11): 1783-1795, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31700175

RESUMO

Proinflammatory cytokines in the tumor microenvironment can promote tumor growth, yet their value as therapeutic targets remains underexploited. We validated the functional significance of the cardiotrophin-like cytokine factor 1 (CLCF1)-ciliary neurotrophic factor receptor (CNTFR) signaling axis in lung adenocarcinoma (LUAD) and generated a high-affinity soluble receptor (eCNTFR-Fc) that sequesters CLCF1, thereby inhibiting its oncogenic effects. eCNTFR-Fc inhibits tumor growth in multiple xenograft models and in an autochthonous, highly aggressive genetically engineered mouse model of LUAD, driven by activation of oncogenic Kras and loss of Trp53. Abrogation of CLCF1 through eCNTFR-Fc appears most effective in tumors driven by oncogenic KRAS. We observed a correlation between the effectiveness of eCNTFR-Fc and the presence of KRAS mutations that retain the intrinsic capacity to hydrolyze guanosine triphosphate, suggesting that the mechanism of action may be related to altered guanosine triphosphate loading. Overall, we nominate blockade of CLCF1-CNTFR signaling as a novel therapeutic opportunity for LUAD and potentially for other tumor types in which CLCF1 is present in the tumor microenvironment.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Proliferação de Células/genética , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Citocinas/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/química , Citocinas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucinas/genética , Camundongos , Mutação/genética , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Artigo em Inglês | MEDLINE | ID: mdl-31645344

RESUMO

Gliomatosis peritonei is a rare pathologic finding that is associated with ovarian teratomas and malignant mixed germ cell tumors. The occurrence of gliomatosis as a mature glial implant can impart an improved prognosis to patients with immature ovarian teratoma, making prompt and accurate diagnosis important. We describe a case of recurrent immature teratoma in a 10-yr-old female patient, in which comparative analysis of the RNA sequencing gene expression data from the patient's tumor was used effectively to aid in the diagnosis of gliomatosis peritonei.


Assuntos
Neoplasias Peritoneais/diagnóstico , Neoplasias Peritoneais/genética , Teratoma/diagnóstico , Sequência de Bases/genética , Criança , Feminino , Glioma/diagnóstico , Glioma/genética , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Prognóstico , RNA-Seq/métodos , Doenças Raras/diagnóstico , Doenças Raras/genética , Análise de Sequência de RNA/métodos , Teratoma/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA