Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nano Lett ; 20(6): 4162-4168, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32105489

RESUMO

We have demonstrated a new class of phosphor-free white LEDs with the use of tunnel junction structure in nonpolar core-shell InGaN nanowires. It is confirmed that the tunnel junction based nanowire LEDs can eliminate the use of the resistive p-GaN:Mg contact layer, leading to significantly enhanced hole injection and dramatically reduced voltage loss. The nonpolar core-shell nanowire heterostructure showed the enhanced carrier injection efficiency through the widened shell n-GaN contact area. The TEM analysis verified that the core-shell Al tunnel junction layers were uniformly grown on nonpolar surfaces of the GaN wurtzite crystal nanowire structure. We have also showed the monolithic integration of multiple-color emission on a single chip by using the multiple-stacked tunnel junction core-shell nanowire heterostructure. Compared to the conventional film based quantum well LEDs, the demonstrated nonpolar core-shell tunnel junction nanowire LEDs will be a very promising candidate for future solid-state lighting applications as well as phosphor-free white LEDs.

2.
J Nanosci Nanotechnol ; 19(2): 892-896, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360168

RESUMO

The effects of Al metal pre-deposition under different conditions on GaN grown on Si(111) substrates by metal-organic chemical vapor deposition (MOCVD) have been investigated. Al pre-deposition improves surface morphology and crystal quality of GaN grown on Si. The surface morphology of Al pre-deposition layer, AlN, and GaN vary depending on Al pre-deposition temperature. With the increase of Al pre-deposition temperature, Al cluster size is observed to increase in the Al predeposition layer due to increased lateral mobility of Al atoms. The Al pre-deposition carried out at about 750 °C enables to grow pit-free GaN layer on Si(111) substrate.

3.
Nanotechnology ; 29(31): 315603, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29749963

RESUMO

This paper reports the formation of GaN and InN quantum dots (QDs) with symmetric spherical shapes, grown on SiN/Si(111). Spherical QDs are grown by modulating initial growth behavior via gallium and indium droplets functioning as nucleation sites for QDs. Field-emission scanning electron microscope (FE-SEM) images show that GaN and InN QDs are formed on curved SiN/Si(111) instead of on a flat surface similar to balls on a latex mattress. This is considerably different from the structural properties of In(Ga)As QDs grown on GaAs or InP. In addition, considering the shape of the other III-V semiconductor QDs, the QDs in this study are very close to the ideal shape of zero-dimensional nanostructures. Transmission-electron microscope images show the formation of symmetric GaN and InN QDs with a round shape, agreeing well with the FE-SEM results. Compared to other III-V semiconductor QDs, the unique structural properties of Si-based GaN and InN QDs are strongly related to the modulation in the initial nucleation characteristics due to the presence of droplets, the degree of lattice mismatch between GaN or InN and SiN/Si(111), and the melt-back etching phenomenon.

4.
Opt Express ; 25(13): 15152-15160, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28788945

RESUMO

We report a possible way to extend the emission wavelength of InyGa1-yN/InxGa1-xN quantum-well (QW) light-emitting diodes (LEDs) to the yellow-red spectral range with little degradation of the radiative efficiency. The InyGa1-yN well with high indium (In) content (HI-InyGa1-yN) was realized by periodic Ga-flow interruption (Ga-FI). The In contents of the HI-InyGa1-yN well and the InxGa1-xN barrier were changed to manipulate the emission wavelength of the LEDs. An In0.34Ga0.66N/In0.1Ga0.9N-QW LED, grown by continuous growth mode (C-LED), was prepared as a reference. The photoluminescence (PL) wavelengths of the HI-InyGa1-yN/InxGa1-xN QW LEDs were changed from 556 to 597 nm. The PL intensity of the HI-InyGa1-yN/InxGa1-xN LED with a peak wavelength of 563 nm was 2.7 times stronger than that of the C-LED (λ = 565 nm). The luminescence intensity for the HI-InyGa1-yN/InxGa1-xN QW LED emitting at 597 nm was stronger than those of the other LED samples with shorter wavelengths. Considering the previous works on degradation in crystal quality and increase in the quantum-confined Stark effect with increasing In content in InGaN, the approach in this work is very promising for yellow-red InGaN LEDs.

5.
Soft Matter ; 13(34): 5759-5766, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28761944

RESUMO

Herein, we have synthesized novel photopolymerizable dumbbell-shaped diacetylene liquid crystal (LC) monomers by locating a diacetylene dicarboxylic acid group at the center and chemically connecting swallow-tails, such as hydrophobic alkyl chains (abbreviated as AT3DI) and amphiphilic biphenyl mesogens (abbreviated as BP3DI), with bisamide groups. Major phase transitions of dumbbell-shaped diacetylene monomers were identified using differential scanning calorimetry (DSC), polarized optical microscopy (POM), and Fourier transform infrared spectroscopy (FT IR). Molecular packing structures were studied based on structure-sensitive wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) analyses. Mainly, due to nanophase separations and strong intermolecular hydrogen bonding, AT3DI formed a low-ordered lamellar LC phase at room temperature. BP3DI self-assembled into highly-ordered crystal phases (K1 and K2) at lower temperatures below a low-ordered lamellar LC phase, in which BP3DI were intercalated with each other to compensate the mutual volume differences. From the photopolymerization of AT3DI and BP3DI, it was realized that the topochemical reactions of dumbbell-shaped diacetylene monomers were closely related to their chemical structures as well as molecular packing structures.

6.
Opt Express ; 24(21): 24153-24160, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828246

RESUMO

We evaluated the effects of grid patterns (GPs) realized on 2-inch sapphire substrates by simple laser treatment on the device characteristics of InGaN/GaN light-emitting diodes (LEDs). The degrees of wafer bowing for the LEDs with distances between the GPs of 1 (GP1-LED), 2 (GP2-LED), and 3 mm (GP3-LED) were 100.05, 100.43, and 101.59 µm, respectively, which are significantly improved compared to that (108.06 µm) of a conventional LED (C-LED) without GPs. Consequently, a blue-shift of the emission wavelength for the GP-LEDs was observed compared to the C-LED via alleviation of the quantum-confined stark effect. A comparative study of the fluorescence microscopy images of the C-LED and GP2-LED samples showed a significant reduction of threading dislocations as a result of the GPs. In the electroluminescence mapping results for the entire 2-inch region, the standard deviations of the emission wavelengths were 1.64, 1.49, and 2.55 nm for the GP1-LED, GP2-LED, and GP3-LED samples, respectively, which are smaller than that of the C-LED (2.66 nm). In addition, the average output power of the GP2-LED was 8.5% higher than that of the C-LED.

7.
Opt Express ; 24(7): 7743-51, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27137059

RESUMO

We report significant improvement in optical and electrical properties of green InGaN/GaN light-emitting diodes (LEDs) by using Si-doped graded short-period InGaN/GaN superlattice (SiGSL) formed by so called indium-conversion technique. For comparison, a conventional LED without the superlattice (C-LED) and a LED with undoped graded superlattice (unGSL-LED) were prepared, respectively. The photoluminescence (PL) intensity of the SiGSL-LED was increased more than 3 times at room temperature (RT) as compared to C-LED. The PL intensity ratios of RT to 10K for the C-LED, unGSL-LED, and SiGSL-LED were measured to be 25, 40.9, and 47.5%, respectively. The difference in carrier lifetimes between 10K and RT for the SiGSL-LED is relatively small compared to that of the C-LED, which is consistent with the variation in PL intensity. The output power of a transistor-outline type SiGSL-LED was increased more than 2 times higher than that of the C-LED.

8.
Nano Lett ; 14(3): 1537-45, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24564712

RESUMO

We report the controlled synthesis of InGaN/GaN multiple quantum well (MQW) uniaxial (c-plane) and coaxial (m-plane) nanowire (NW) heterostructures by metalorganic chemical vapor deposition. Two kinds of heterostructure NW light-emitting diodes (LEDs) have been fabricated: (1) 10 pairs of InGaN/GaN MQW layers in the c-plane on the top of n-GaN NWs where Mg-doped p-GaN NW is axially grown (2) p-GaN/10 pairs of InGaN/GaN shell structure were surrounded by n-GaN core. Here, we discuss a comparative analysis based on the m-plane and the c-plane oriented InGaN/GaN MQW NW arrays. High-resolution transmission electron microscopy studies revealed that the barrier and the well structures of MQW were observed to be substantially clear with regular intervals while the interface regions were extremely sharp. The c-plane and m-plane oriented MQW single NW was utilized for the parallel assembly fabrication of the LEDs via a focused ion beam. The polarization induced effects on the c-plane and m-plane oriented MQW NWs were precisely compared via power dependence electroluminescence. The electrical properties of m-plane NWs exhibited superior characteristics than that of c-plane NWs owing to the absence of piezoelectric polarization fields. According to this study, high-quality m-plane coaxial NWs can be utilized for the realization of high-brightness LEDs.

9.
Nano Lett ; 13(8): 3506-16, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23701263

RESUMO

We report the growth of high-quality nonpolar (m-plane) and semipolar (r-plane) multiple quantum well (MQW) nanowires (NWs) for high internal quantum efficiency light emitting diodes (LEDs) without polarization. Highly aligned and uniform In(x)Ga(1-x)N/GaN MQW layers are grown coaxially on the {1-100} sidewalls of hexagonal c-axis n-GaN NWs on Si(111) substrates by a pulsed flow metal-organic chemical vapor deposition (MOCVD) technique. The photoluminescence (PL) measurements reveal that the wavelength and intensity of an MQW structure with various pairs (2-20) are very stable and possess composition-dependent emission ranging from 369 to 600 nm. The cathodoluminescence (CL) spectrum of individual In(x)Ga(1-x)N/GaN MQW NW is dominated by band-edge emission at 369 and 440 nm with a relatively homogeneous profile of parallel alignment. High-resolution transmission electron microscopy (HR-TEM) studies of coaxial InxGa1-xN/GaN MQW NWs measured along the [0001] and [2-1-10] zone axes reveal that the grown NWs are uniform with six nonpolar m-plane facets without any dislocations and stacking faults. The p-GaN/In(x)Ga(1-x)N/GaN MQW/n-GaN NW coaxial LEDs show a current rectification with a sharp onset voltage at 2.65 V in the forward bias. The linear enhancement of power output could be attributed to the elimination of piezoelectric fields in the In(x)Ga(1-x)N/GaN MQW active region. The superior performance of coaxial NW LEDs is observed in comparison with that of thin film LEDs. Overall, the feasibility of obtaining low defect and strain free m-plane coaxial NWs using pulsed MOCVD can be utilized for the realization of high-power LEDs without an efficiency droop. These kinds of coaxial NWs are viable high surface area MQW structures which can be used to enhance the efficiency of LEDs.

10.
ACS Appl Mater Interfaces ; 16(7): 9020-9029, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324755

RESUMO

Despite the considerable potential of AlGaN-based ultraviolet-B light-emitting diodes (UV-B LEDs) in various applications such as phototherapy, UV curing, plant growth, and analytical technology, their development is still ongoing due to low luminescence efficiency. In this study, we introduced a novel epitaxial growth mechanism to effectively control the height and thickness of AlGaN multiple wells (MWs) on AlGaN nanorod structures using horizontal reactor-based metal-organic chemical vapor deposition (MOCVD). By adjusting the H2 carrier gas flow rate, we could control the growth boundary layer's thickness, successfully separating the AlGaN well and p-AlGaN layer from the substrate. Cathodoluminescence (CL) measurements confirmed the stability of the core-shell AlGaN quantum wells as a highly stable nonpolarized structure, with the wavelength peak remaining almost unchanged under various injection currents. Furthermore, transmission electron microscopy (TEM) provided clear evidence of differentiation, highlighting the distinct formation of the 275 nm AlGaN core and the 295 nm AlGaN shell structure. The developed AlGaN MW structure, characterized by these rectification features, not only demonstrated a significantly improved electroluminescence (EL) peak intensity but also exhibited a much lower leakage current compared to the conventional core-shell AlGaN structure. The newly proposed growth mechanism and advanced nonpolarized core-shell AlGaN structure are expected to serve as excellent alternatives for substantially enhancing the efficiency of the next generation of high-efficiency UV LEDs.

11.
Materials (Basel) ; 15(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454605

RESUMO

This study reports an integrated device in which a lithium-ion battery (LIB) and Si solar cells are interconnected. The LIB is fabricated using the Li(Ni0.65Co0.15Mn0.20)O2 (NCM622) cathode and the Li4Ti5O12 (LTO) anode. The surface and shape morphologies of the NCM and LTO powders were investigated by field emission scanning electron microscopy (FE-SEM). In addition, the structural properties were thoroughly examined by X-ray diffraction (XRD). Further, their electrochemical characterization was carried out on a potentiostat. The specific discharge capacity of the NCM cathode (half-cell) was 188.09 mAh/g at 0.1 C current density. In further experiments, the NCM-LTO full-cell has also shown an excellent specific capacity of 160 mAh/g at a high current density of 1 C. Additionally, the capacity retention was outstanding, with 99.63% at 1 C after 50 cycles. Moreover, to meet the charging voltage requirements of the NCM-LTO full-cell, six Si solar cells were connected in series. The open-circuit voltage (VOC) and the short-circuit photocurrent density (JSC) for the Si solar cells were 3.37 V and 5.42 mA/cm2. The calculated fill factor (FF) and efficiency for the Si solar cells were 0.796 and 14.54%, respectively. Lastly, the integrated device has delivered a very high-power conversion-storage efficiency of 7.95%.

12.
Nanomaterials (Basel) ; 12(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407276

RESUMO

Commercial lithium-ion batteries using liquid electrolytes are still a safety hazard due to their poor chemical stability and other severe problems, such as electrolyte leakage and low thermal stability. To mitigate these critical issues, solid electrolytes are introduced. However, solid electrolytes have low ionic conductivity and inferior power density. This study reports the optimization of the synthesis of sodium superionic conductor-type Li1.5Al0.3Si0.2Ti1.7P2.8O12 (LASTP) solid electrolyte. The as-prepared powder was calcined at 650 °C, 700 °C, 750 °C, and 800 °C to optimize the synthesis conditions and yield high-quality LASTP powders. Later, LASTP was sintered at 950 °C, 1000 °C, 1050 °C, and 1100 °C to study the dependence of the relative density and ionic conductivity on the sintering temperature. Morphological changes were analyzed using field-emission scanning electron microscopy (FE-SEM), and structural changes were characterized using X-ray diffraction (XRD). Further, the ionic conductivity was measured using electrochemical impedance spectroscopy (EIS). Sintering at 1050 °C resulted in a high relative density and the highest ionic conductivity (9.455 × 10-4 S cm-1). These findings corroborate with the activation energies that are calculated using the Arrhenius plot. Therefore, the as-synthesized superionic LASTP solid electrolytes can be used to design high-performance and safe all-solid-state batteries.

13.
Nanoscale Adv ; 3(17): 5036-5045, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36132351

RESUMO

In group III-nitride based semiconductor structures, the incorporation of high-indium-composition InGaN has been severely limited by extremely inefficient strain-induced polarization fields and prohibitively large defect densities. So far, there is no clear approach to solve this issue. Here, we have shown a new approach to incorporate high concentrations of indium in the InGaN structure by using a non-polar quasi-quantum dot heterostructure. This unique epitaxial growth was achieved by integrating a 1-dimensional nanowire and a 0-dimensional quantum dot structure using an MOCVD system. The formation of a high-efficiency quantum-sliding heterostructure and high-quality nanowire structure was confirmed by FE-SEM and TEM measurements. Furthermore, it has been suggested that such a quantum-dot structure can dramatically improve radiative recombination through a new sliding bandgap mechanism. We also found that non-polar quantum dots can not only incorporate more indium than conventional multi-quantum well structures grown on the nanowire structure, but also significantly improve crystalline quality. The PL results verified that the wavelength of quantum dots fabricated on the nanowire structure can easily shift up to 913 nm. The first demonstration in the integration of nanowire and quantum dot structures will open a new avenue to break through the limitations of high indium incorporation in photonic semiconductor systems.

14.
ACS Appl Mater Interfaces ; 13(19): 22728-22737, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33969979

RESUMO

To effectively implement wearable systems, their constituent components should be made stretchable. We successfully fabricated highly efficient stretchable photosensors made of inorganic GaN nanowires (NWs) as light-absorbing media and graphene as a carrier channel on polyurethane substrates using the pre-strain method. When a GaN-NW photosensor was stretched at a strain level of 50%, the photocurrent was measured to be 0.91 mA, corresponding to 87.5% of that (1.04 mA) obtained in the released state, and the photoresponsivity was calculated to be 11.38 A/W. These photosensors showed photocurrent and photoresponsivity levels much higher than those previously reported for any stretchable semiconductor-containing photosensor. To explain the superior performances of the stretchable GaN-NW photosensor, it was approximated as an equivalent circuit with resistances and capacitances, and in this way, we analyzed the behavior of the photogenerated carriers, particularly at the NW-graphene interface. In addition, the buckling phenomenon typically observed in organic-based stretchable devices fabricated using the pre-strain method was not observed in our photosensors. After a 1000-cycle stretching test with a strain level of 50%, the photocurrent and photoresponsivity of the GaN-NW photosensor were measured to be 0.96 mA and 11.96 A/W, respectively, comparable to those measured before the stretching test. To evaluate the potential of our stretchable devices in practical applications, the GaN-NW photosensors were attached to the proximal interphalangeal joint of the index finger and to the back of the wrist. Photocurrents of these photosensors were monitored during movements made about these joints.

15.
ACS Appl Mater Interfaces ; 12(35): 39695-39704, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805839

RESUMO

The high interest sparked by the foldable smartphones recently released on the market is gradually shifting to the next generation of flexible electronic devices, such as electronic skins in the form of stretchable thin films. To develop such devices, good mechanical flexibility of all components (including the substrate, electrode, and encapsulant) is critical. Various technologies have been developed to enhance the flexibility of these components; however, progress in developing interconnection methods for flexible and stretchable devices has been limited. Here, we developed an ultrafast photoinduced interconnection method that does not require any adhesive or surface treatment. This method is based on heating metal nanostructures using intense pulsed light (IPL) and the reversible cross-linking of polymers. First, we synthesized a stretchable, transparent, and free-standing polymer substrate that can be reversibly cross-linked, and then Ag nanowire (AgNW) networks were formed on its surface. This electrode was irradiated with IPL, which locally heated the AgNWs, followed by decomposition of the polymer via the retro-Diels-Alder reaction and recross-linking. Independently fabricated AgNW/polymer films were layered and irradiated three times with IPL to form a bonded sample with excellent joint quality and no increase in electrical resistance compared to a single electrode. Furthermore, the interconnected electrodes were stretchable and optically transparent. Even when more than 200% strain was applied in a peel test, no breakage at the joint was observed. This allowed us to successfully produce a stretchable, transparent, and bending-insensitive pressure sensor for various applications such as motion detectors or pressure sensor arrays.

16.
ACS Appl Mater Interfaces ; 12(36): 40794-40801, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32799527

RESUMO

As the interest in foldable smartphones recently launched onto the market shifts toward the next generation of flexible electronics, the development of ultrathin devices is gaining considerable attention. The strain formed on the surfaces of film-based devices approximates the film thickness divided by twice the radius of curvature; therefore, the use of an ultrathin substrate is the key for the development of next generation foldable devices. However, the stiffness of ultrathin films is extremely low; thus, it cannot be easily used directly as a substrate for device fabrication. Therefore, these films generally undergo device manufacturing processes while being attached to a rigid substrate such as glass and are peeled from the rigid substrate after the process is finished. Thus, the initial adhesion of the adhesive used to fix the film to the temporary substrate should be strong, and after the process is completed, the adhesion must be lessened to enable soft peeling. In this study, we succeeded in developing a novel pressure-sensitive adhesive (PSA) whose adhesive strength can be severely reduced by water treatment. Accordingly, considering that amphiphilic oligomers promote water absorption through hydrogen bonding to water, amphiphilic oligomers were mixed with an acrylic polymer to prepare the water-responsive PSA (wr-PSA). The adhesion strength of the wr-PSA in the early stage, which reached 382(±22) N/m, dramatically dropped to 9(±2) N/m after a water immersion test. Using the wr-PSA, a 1.4 µm-thick polyethylene terephthalate film coated with Ag nanowires was softly peeled off from the glass after being immersed in warm water. In addition, the adhesion reduced by the immersion in water was recovered again when the water absorbed by the adhesive was dried. This implies that the developed adhesive can be reusable.

17.
ACS Appl Mater Interfaces ; 12(52): 58028-58037, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33337852

RESUMO

In the present study, we have achieved high-performance photoelectrochemical water splitting (PEC-WS) using GaN nanowires (NWs) coated with tungsten sulfide (WxS1-x) (GaN-NW-WxS1-x) as a photoanode. The measured current density and applied-bias photon-to-current efficiency were 20.38 mA/cm2 and 13.76%, respectively. These values were much higher than those reported previously for photoanodes with any kind of III-nitride nanostructure. The amount of hydrogen gas formed was 1.01 mmol/cm2 from 7 h PEC-WS, which was also much higher than the previously reported values. The drastic improvement in the PEC-WS performance using the GaN-NW-WxS1-x photoanode was attributed to an increase in the number of photogenerated carriers due to the highly crystalline GaN NWs, and acceleration of separation of photogenerated carriers and consequent suppression of charge recombination because of nitrogen-terminated surfaces of NWs, sulfur vacancies in WxS1-x, and type-II band alignment between NW and WxS1-x. The degree of impedance matching, evaluated from Nyquist plots, was considered to analyze charge transfer characteristics at the interface between the GaN-NW-WxS1-x photoanode and 0.5-M H2SO4 electrolyte. Considering the material system and scheme for the PEC-WS, our approach provides an efficient way to improve hydrogen evolution reaction.

18.
ACS Appl Mater Interfaces ; 12(9): 10949-10958, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32053751

RESUMO

Reversible bonding between polymer chains has been used primarily to induce self-healing of damaged polymers. Inspired by the dynamic nature of such bonding, we have developed a polyurethane equipped with dynamic urea bonds (PEDUB) that has high strength sufficient to make it be freestanding and have a healing capability and self-bonding property. This allowed subsequent heterogeneous multicomponent device integration of electrodes/substrate and light-emitting pixels into a light-emitting device. We first used the PEDUB to individually fabricate a highly stretchable electrode containing Ag nanowires and stretchable composites with ZnS-based particles. They were successfully assembled into a stretchable, waterproof electroluminescent (EL) device even under mild conditions (60 °C for 10 min) owing to the reversible exchange of urea bonds and low glass transition temperature of PEDUB. The assembled device with an AC-driven EL architecture retained excellent EL characteristics even after stretching, submersion in water, and cutting owing to the robust solid-state bonding interfaces induced by the dynamic urea bonds. Consequently, various shapes of the illuminating elastomer and an illuminated picture were realized for the first time using the mosaic-like assembly method. This first demonstration of multicomponent assembly paves the way for future stretchable multifunctional devices.

19.
ACS Appl Mater Interfaces ; 12(5): 6516-6524, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913010

RESUMO

A reversibly cross-linkable and transparent polymer featuring stretchability and thermal healability is prepared by introducing Diels-Alder (DA)-reactive moieties into polydimethylsiloxane (PDMS), namely, a healable PDMS (h-PDMS). Inspired by the fact that retro-DA reactions occur even at low temperatures (albeit at a low rate), we maximize the effectiveness of small reactant products, demonstrating that self-healing and self-integration realized by 1-3 min exposure of cured h-PDMS to methyl ethyl ketone (MEK) vapor is more efficient than that achieved by direct sample heating at high temperatures. This technology is first used to uniformly transfer Ag nanowires (Ag NWs) formed on a temporary substrate to the h-PDMS surface, and further MEK vapor treatment allows the transferred NWs to be impregnated below the h-PDMS surface to afford an in-plane strain sensor. Most importantly, the developed method is used to perfectly integrate two identical Ag NW/h-PDMS films and thus place NWs on a neutral plane. Consequently, because of the unique structure in which a percolated network of AgNWs is formed on the interface where the two identical h-PDMS films are chemically integrated, the fabricated sensor is transparent, self-healable, stretchable, and insensitive to bending but sensitively responds to in-plane strain induced by lateral deformation.

20.
ACS Appl Mater Interfaces ; 12(1): 970-979, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31840489

RESUMO

We report the fast response characteristics of flexible ultraviolet photosensors with GaN nanowires (NWs) and a graphene channel. The GaN NWs used as light-absorbing media are horizontally and randomly embedded in a graphene sandwich structure in which the number of bottom graphene layers is varied from zero to three and the top is a fixed single layer of graphene. In the response curve of the photosensor with a double-layer bottom graphene, as obtained under pulsed illumination with a pulse width of 50 ms and a duty cycle of 50%, the rise and decay times were measured as 24.1 ± 0.1 and 28.2 ± 0.1 ms, respectively. The eye-crossing percentage was evaluated as 52.1%, indicating no substantial distortion of the duty cycle and no pulse symmetry problem. The rise and decay times estimated from an equivalent circuit analysis represented by resistances and capacitances agree well with the measured values. When the device was under the bending condition, the rise and decay times of the photosensor were comparable to those in the unbent state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA