Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12395-12400, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682244

RESUMO

Quantitative understanding of the chemisorption on single-atom catalysts (SACs) by their electronic properties is crucial for the catalyst design. However, the physical mechanism is still under debate. Here, the CO catalytic oxidation on single transition metal (i.e., Sc, Ti, V, Cr, Mn, Fe, Co, Ni) dopants is used as a theoretical model to explore the correlations between the characteristics of electronic structures and the chemisorption on SACs. For these metal dopants, their atomic d orbitals form several nondegenerate and localized electronic states that are found to be selectively coupled with the π* orbital of the adsorbed O2, which we defined as selective orbital coupling. Based on the selective orbital coupling, we find that the alignment between the selected d state and the π* state determines the bond strength, regardless of the electron occupation number of the selected d states; the electron transfer to form M-O bonding can be provided by the support. Such electron transfer can be related with the electronic metal-support interaction. We attribute the origin of the chemisorption mechanism to the coexistence of the localized orbital of the single transition metal and the continuous energy band of the Au support. Finally, we illustrate how this mechanism dominates the variation trend of the reaction barriers. Our results unravel a fundamental adsorption mechanism in SAC systems.

2.
ACS Omega ; 6(14): 9692-9699, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869949

RESUMO

In this study, electronic structure calculations and Bader charge analysis have been completed on the inverse, intermediate, and normal spinel structures of NiCo2O4 in both primitive and conventional cells, using density functional theory with Hubbard U correction. Three spinel structures have been computed in the primitive cell, where the fully inverse spinel, 50% intermediate spinel, and normal spinel can be acquired by swapping Ni and Co atoms on tetrahedral and octahedral sites. Furthermore, NiCo2O4 with different degrees of inversion in the conventional cells was also investigated, along with their doping energies. Confirmed by the assigned formal charges, magnetic moments, and decomposed density of state, our results suggest that the electronic properties of Ni and Co on the tetrahedral site can be altered by swapping Ni and Co atoms, whereas both Ni and Co on the octahedral site are uninfluenced. A simple and widely used model, crystal field theory, is also compared with our calculations and shows a consistent prediction about the cation distribution in NiCo2O4. This study analyzes the correlation between cation arrangements and formal charges, which could potentially be used to predict the desired electronic properties of NiCo2O4 for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA