Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Neurosci ; 22(2): 26, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36992594

RESUMO

BACKGROUND: A gerbil model of ischemia and reperfusion (IR) injury in the forebrain has been developed for studies on mechanisms, prevention and therapeutic strategies of IR injury in the forebrain. Pycnogenol® (PYC), a standardized extract of French maritime pine tree (Pinus pinaster Aiton) has been exploited as an additive for dietary supplement. In the present study, we investigated the neuroprotective effects of post-treatment with PYC and its therapeutic mechanisms in gerbils. METHODS: The gerbils were given sham and IR operation and intraperitoneally injected with vehicle and Pycnogenol® (25, 50 and 100 mg/kg, respectively) immediately, at 24 hours and 48 hours after sham and IR operation. Through 8-arm radial maze test and passive avoidance test, each spatial memory and short-term memory function was assessed. To examine the neuroprotection of Pycnogenol®, we conducted cresyl violet staining, immunohistochemistry for neuronal nuclei, and Fluoro-Jade B histofluorescence. Moreover, we carried out immunohistochemistry for immunoglobulin G (IgG) to investigate blood-brain barrier (BBB) leakage and interleukin-1ß (IL-1ß) to examine change in pro-inflammatory cytokine. RESULTS: We found that IR-induced memory deficits were significantly ameliorated when 100 mg/kg Pycnogenol® was treated. In addition, treatment with 100 mg/kg Pycnogenol®, not 25 mg/kg nor 50 mg/kg, conferred neuroprotective effect against IR injury. For its mechanisms, we found that 100 mg/kg Pycnogenol® significantly reduced BBB leakage and inhibited the expression of IL-1ß. CONCLUSIONS: Therapeutic treatment (post-treatment) with Pycnogenol® after IR effectively attenuated ischemic brain injury in gerbils. Based on these results, we suggest that PYC can be employed as an important material for ischemic drugs.


Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Fármacos Neuroprotetores , Animais , Gerbillinae , Barreira Hematoencefálica , Doenças Neuroinflamatórias , Hipocampo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Fármacos Neuroprotetores/farmacologia
2.
Mar Drugs ; 20(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35447940

RESUMO

Astaxanthin is a powerful biological antioxidant and is naturally generated in a great variety of living organisms. Some studies have demonstrated the neuroprotective effects of ATX against ischemic brain injury in experimental animals. However, it is still unknown whether astaxanthin displays neuroprotective effects against severe ischemic brain injury induced by longer (severe) transient ischemia in the forebrain. The purpose of this study was to evaluate the neuroprotective effects of astaxanthin and its antioxidant activity in the hippocampus of gerbils subjected to 15-min transient forebrain ischemia, which led to the massive loss (death) of pyramidal cells located in hippocampal cornu Ammonis 1-3 (CA1-3) subfields. Astaxanthin (100 mg/kg) was administered once daily for three days before the induction of transient ischemia. Treatment with astaxanthin significantly attenuated the ischemia-induced loss of pyramidal cells in CA1-3. In addition, treatment with astaxanthin significantly reduced ischemia-induced oxidative DNA damage and lipid peroxidation in CA1-3 pyramidal cells. Moreover, the expression of the antioxidant enzymes superoxide dismutase (SOD1 and SOD2) in CA1-3 pyramidal cells were gradually and significantly reduced after ischemia. However, in astaxanthin-treated gerbils, the expression of SOD1 and SOD2 was significantly high compared to in-vehicle-treated gerbils before and after ischemia induction. Collectively, these findings indicate that pretreatment with astaxanthin could attenuate severe ischemic brain injury induced by 15-min transient forebrain ischemia, which may be closely associated with the decrease in oxidative stress due to astaxanthin pretreatment.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo , Isquemia/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase-1/metabolismo , Xantofilas
3.
Mar Drugs ; 20(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354992

RESUMO

Laminarin is a polysaccharide isolated from brown marine algae and has a wide range of bioactivities, including immunoregulatory and anti-inflammatory properties. However, the effects of laminarin on atopic dermatitis have not been demonstrated. This study investigated the potential effects of topical administration of laminarin using a Balb/c mouse model of oxazolone-induced atopic dermatitis-like skin lesions. Our results showed that topical administration of laminarin to the ear of the mice improved the severity of the dermatitis, including swelling. Histological analysis revealed that topical laminarin significantly decreased the thickening of the epidermis and dermis and the infiltration of mast cells in the skin lesion. Serum immunoglobulin E levels were also significantly decreased by topical laminarin. Additionally, topical laminarin significantly suppressed protein levels of oxazolone-induced proinflammatory cytokines, such as interleukin-1ß, tumor necrosis factor-α, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α in the skin lesion. These results indicate that topical administration of laminarin can alleviate oxazolone-induced atopic dermatitis by inhibiting hyperproduction of IgE, mast cell infiltration, and expressions of proinflammatory cytokines. Based on these findings, we propose that laminarin can be a useful candidate for the treatment of atopic dermatitis.


Assuntos
Dermatite Atópica , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Oxazolona/toxicidade , Oxazolona/metabolismo , Dinitroclorobenzeno/metabolismo , Dinitroclorobenzeno/farmacologia , Dinitroclorobenzeno/uso terapêutico , Imunoglobulina E , Extratos Vegetais/farmacologia , Administração Tópica , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Pele
4.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563487

RESUMO

Neuronal loss (death) occurs selectively in vulnerable brain regions after ischemic insults. Astrogliosis is accompanied by neuronal death. It can change the molecular expression and morphology of astrocytes following ischemic insults. However, little is known about cerebral ischemia and reperfusion injury that can variously lead to damage of astrocytes according to the degree of ischemic injury, which is related to neuronal damage/death. Thus, the purpose of this study was to examine the relationship between damage to cortical neurons and astrocytes using gerbil models of mild and severe transient forebrain ischemia induced by blocking the blood supply to the forebrain for five or 15 min. Significant ischemia tFI-induced neuronal death occurred in the deep layers (layers V and VI) of the motor cortex: neuronal death occurred earlier and more severely in gerbils with severe ischemia than in gerbils with mild ischemia. Distinct astrogliosis was detected in layers V and VI. It gradually increased with time after both ischemiae. The astrogliosis was significantly higher in severe ischemia than in mild ischemia. The ischemia-induced increase of glial fibrillary acidic protein (GFAP; a maker of astrocyte) expression in severe ischemia was significantly higher than that in mild ischemia. However, GFAP-immunoreactive astrocytes were apparently damaged two days after both ischemiae. At five days after ischemiae, astrocyte endfeet around capillary endothelial cells were severely ruptured. They were more severely ruptured by severe ischemia than by mild ischemia. However, the number of astrocytes stained with S100 was significantly higher in severe ischemia than in mild ischemia. These results indicate that the degree of astrogliosis, including the disruption (loss) of astrocyte endfeet following ischemia and reperfusion in the forebrain, might depend on the severity of ischemia and that the degree of ischemia-induced neuronal damage may be associated with the degree of astrogliosis.


Assuntos
Ataque Isquêmico Transitório , Córtex Motor , Traumatismo por Reperfusão , Animais , Astrócitos/metabolismo , Células Endoteliais/metabolismo , Gerbillinae/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Isquemia/metabolismo , Ataque Isquêmico Transitório/metabolismo , Córtex Motor/metabolismo , Prosencéfalo/metabolismo , Traumatismo por Reperfusão/metabolismo
5.
Korean J Physiol Pharmacol ; 26(1): 47-57, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965995

RESUMO

Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.

6.
Neurochem Res ; 46(11): 2852-2866, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34050880

RESUMO

Transient ischemia in the brain causes blood-brain barrier (BBB) breakdown and dysfunction, which is related to ischemia-induced neuronal damage. Leakage of plasma proteins following transient ischemia is one of the indicators that is used to determine the extent of BBB dysfunction. In this study, neuronal damage/death, leakage of albumin and IgG, microgliosis, and inflammatory cytokine expression were examined in the hippocampal CA1 region, which is vulnerable to transient ischemia, following 5-min (mild) and 15-min (severe) ischemia in gerbils induced by transient common carotid arteries occlusion (tCCAo). tCCAo-induced neuronal damage/death occurred earlier and was more severe after 15-min tCCAo vs. after 5-min tCCAo. Significant albumin and IgG leakage (albumin and IgG immunoreactivity) took 1 or 2 days to begin, and immunoreactivity was markedly increased 5 days after 5-min tCCAo. While, albumin and IgG leakage began to increase 6 h after 15-min tCCAo and remained significantly higher over time than that seen in 5-min tCCAo. IgG immunoreactivity was observed in degenerating neurons and activated microglia after tCCAo, and microglia were activated to a greater extent after 15-min tCCAo than 5-min tCCAo. In addition, following 15-min tCCAo, pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß)] immunoreactivity was significantly higher than that seen following 5-min tCCAo, whereas immunoreactivity of anti-inflammatory cytokines (IL-4 and IL-13) was lower in 15-min than 5-min tCCAo. These results indicate that duration of tCCAo differentially affects the timing and degree of neuronal damage or loss, albumin and IgG leakage and inflammatory cytokine expression in brain tissue. In addition, more severe BBB leakage is closely related to acceleration of neuronal damage through increased microglial activation and pro-inflammatory cytokine expression in the ischemic hippocampal CA1 region.


Assuntos
Barreira Hematoencefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Citocinas/biossíntese , Mediadores da Inflamação/metabolismo , Ataque Isquêmico Transitório/metabolismo , Neurônios/metabolismo , Animais , Barreira Hematoencefálica/patologia , Região CA1 Hipocampal/patologia , Morte Celular/fisiologia , Citocinas/genética , Expressão Gênica , Gerbillinae , Ataque Isquêmico Transitório/genética , Ataque Isquêmico Transitório/patologia , Masculino , Neurônios/patologia , Índice de Gravidade de Doença
7.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921375

RESUMO

It has been studied that the damage or death of neurons in the hippocampus is different according to hippocampal subregions, cornu ammonis 1-3 (CA1-3), after transient ischemia in the forebrain, showing that pyramidal neurons located in the subfield CA1 (CA1) are most vulnerable to this ischemia. Hyperthermia is a proven risk factor for brain ischemia and can develop more severe and extensive brain damage related with mortality rate. It is well known that heme oxygenase-1 (HO-1) activity and expression is increased by various stimuli in the brain, including hyperthermia. HO-1 can be either protective or deleterious in the central nervous system, and its roles depend on the expression levels of enzymes. In this study, we investigated the effects of hyperthermia during ischemia on HO-1 expression and neuronal damage/death in the hippocampus to examine the relationship between HO-1 and neuronal damage/death following 5-min transient ischemia in the forebrain using gerbils. Gerbils were assigned to four groups: (1) sham-operated gerbils with normothermia (Normo + sham group); (2) ischemia-operated gerbils with normothermia (Normo + ischemia group); (3) sham-operated gerbils with hyperthermia (39.5 ± 0.2 °C) during ischemia (Hyper + sham group); and (4) ischemia-operated gerbils with hyperthermia during ischemia (Hyper + ischemia group). HO-1 expression levels in CA1-3 of the Hyper + ischemia group were significantly higher than those in the Normo + ischemia group. HO-1 immunoreactivity in the Hyper + ischemia group was significantly increased in pyramidal neurons and astrocytes with time after ischemia, and the immunoreactivity was significantly higher than that in the Normo + ischemia group. In the Normo + Ischemia group, neuronal death was shown in pyramidal neurons located only in CA1 at 5 days after ischemia. However, in the Hyper + ischemia group, pyramidal neuronal death occurred in CA1-3 at 2 days after ischemia. Taken together, our findings showed that brain ischemic insult during hyperthermic condition brings up earlier and severer neuronal damage/death in the hippocampus, showing that HO-1 expression in neurons and astrocytes is different according to brain subregions and temperature condition. Based on these findings, we suggest that hyperthermia in patients with ischemic stroke must be taken into the consideration in the therapy.


Assuntos
Lesões Encefálicas/genética , Heme Oxigenase-1/genética , Hipocampo/metabolismo , Traumatismo por Reperfusão/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo/lesões , Hipocampo/fisiopatologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Traumatismo por Reperfusão/patologia
8.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498705

RESUMO

It has been reported that CD200 (Cluster of Differentiation 200), expressed in neurons, regulates microglial activation in the central nervous system, and a decrease in CD200 expression causes an increase in microglial activation and neuronal loss. The aim of this study was to investigate time-dependent changes in CD200 expression in the hippocampus proper (CA1, 2, and 3 fields) after transient forebrain ischemia for 5 min in gerbils. In this study, 5-min ischemia evoked neuronal death (loss) of pyramidal neurons in the CA1 field, but not in the CA2/3 fields, at 5 days postischemia. In the sham group, CD200 expression was found in pyramidal neurons of the CA1 field, and the immunoreactivity in the group with ischemia was decreased at 6 h postischemia, dramatically increased at 12 h postischemia, decreased (to level found at 6 h postischemia) at 1 and 2 days postischemia, and significantly increased again at 5 days postischemia. At 5 days postischemia, CD200 immunoreactivity was strongly expressed in microglia and GABAergic neurons. However, in the CA3 field, the change in CD200 immunoreactivity in pyramidal neurons was markedly weaker than that in the CA1 field, showing there was no expression of CD 200 in microglia and GABAergic neurons. In addition, treatment of 10 mg/kg risperidone (an atypical antipsychotic drug) after the ischemia hardly changed CD200 immunoreactivity in the CA1 field, showing that CA1 pyramidal neurons were protected from the ischemic injury. These results indicate that the transient ischemia-induced change in CD200 expression may be associated with specific and selective neuronal death in the hippocampal CA1 field following transient forebrain ischemia.


Assuntos
Antígenos CD/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Ataque Isquêmico Transitório/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Risperidona/farmacologia , Animais , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Gerbillinae , Ataque Isquêmico Transitório/patologia , Masculino , Microglia/patologia , Prosencéfalo/irrigação sanguínea , Prosencéfalo/patologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia
9.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918660

RESUMO

Angelica gigas Nakai root contains decursin which exerts beneficial properties such as anti-amnesic and anti-inflammatory activities. Until now, however, the neuroprotective effects of decursin against transient ischemic injury in the forebrain have been insufficiently investigated. Here, we revealed that post-treatment with decursin and the root extract saved pyramidal neurons in the hippocampus following transient ischemia for 5 min in gerbil forebrain. Through high-performance liquid chromatography, we defined that decursin was contained in the extract as 7.3 ± 0.2%. Based on this, we post-treated with 350 mg/kg of extract, which is the corresponding dosage of 25 mg/kg of decursin that exerted neuroprotection in gerbil hippocampus against the ischemia. In addition, behavioral tests were conducted to evaluate ischemia-induced dysfunctions via tests of spatial memory (by the 8-arm radial maze test) and learning memory (by the passive avoidance test), and post-treatment with the extract and decursin attenuated ischemia-induced memory impairments. Furthermore, we carried out histochemistry, immunohistochemistry, and double immunohistofluorescence. Pyramidal neurons located in the subfield cornu ammonis 1 (CA1) among the hippocampal subfields were dead at 5 days after the ischemia; however, treatment with the extract and decursin saved the pyramidal neurons after ischemia. Immunoglobulin G (IgG, an indicator of extravasation), which is not found in the parenchyma in normal brain tissue, was apparently shown in CA1 parenchyma from 2 days after the ischemia, but IgG leakage was dramatically attenuated in the CA1 parenchyma treated with the extract and decursin. Furthermore, astrocyte endfeet, which are a component of the blood-brain barrier (BBB), were severely damaged at 5 days after the ischemia; however, post-treatment with the extract and decursin dramatically attenuated the damage of the endfeet. In brief, therapeutic treatment of the extract of Angelica gigas Nakai root and decursin after 5 min transient forebrain ischemia protected hippocampal neurons from the ischemia, showing that ischemia-induced BBB leakage and damage of astrocyte endfeet was significantly attenuated by the extract and decursin. Based on these findings, we suggest that Angelica gigas Nakai root containing decursin can be employed as a pharmaceutical composition to develop a therapeutic strategy for brain ischemic injury.


Assuntos
Angelica/química , Astrócitos/patologia , Benzopiranos/uso terapêutico , Barreira Hematoencefálica/patologia , Butiratos/uso terapêutico , Ataque Isquêmico Transitório/patologia , Extratos Vegetais/uso terapêutico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Benzopiranos/química , Benzopiranos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Butiratos/química , Butiratos/farmacologia , Gerbillinae , Proteína Glial Fibrilar Ácida/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Imunoglobulina G/metabolismo , Masculino , Neuraminidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Padrões de Referência , Memória Espacial/efeitos dos fármacos
10.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361744

RESUMO

Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus densiflora bark was extracted by pure water (100 °C), and this extract was quantitatively analyzed and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and 100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1) five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg, not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory cytokines (interleukin 1ß and tumor necrosis factor α). In addition, the treatment significantly increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pinus/química , Prosencéfalo/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Flavonoides/química , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação , Interleucina-13/agonistas , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/agonistas , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fármacos Neuroprotetores/química , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Proantocianidinas/química , Proantocianidinas/farmacologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
J Cell Mol Med ; 24(4): 2688-2700, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31958895

RESUMO

In this study, we investigated the effects and molecular mechanisms of 2-phenylbenzimidazole-5-sulphonic acid (PBSA), an ultraviolet B protecting agent used in sunscreen lotions and moisturizers, on ovarian cancer cell responses and tumour angiogenesis. PBSA treatment markedly blocked mitogen-induced invasion through down-regulation of matrix metalloproteinase (MMP) expression and activity in ovarian cancer SKOV-3 cells. In addition, PBSA inhibited mitogen-induced cell proliferation by suppression of cyclin-dependent kinases (Cdks), but not cyclins, leading to pRb hypophosphorylation and G1 phase cell cycle arrest. These anti-cancer activities of PBSA in ovarian cancer cell invasion and proliferation were mediated by the inhibition of mitogen-activated protein kinase kinase 3/6-p38 mitogen-activated protein kinase (MKK3/6-p38MAPK ) activity and subsequent down-regulation of MMP-2, MMP-9, Cdk4, Cdk2 and integrin ß1, as evidenced by treatment with p38MAPK inhibitor SB203580. Furthermore, PBSA suppressed the expression and secretion of vascular endothelial growth factor in SKOV-3 cells, leading to inhibition of capillary-like tubular structures in vitro and angiogenic sprouting ex vivo. Taken together, our results demonstrate the pharmacological effects and molecular targets of PBSA on modulating ovarian cancer cell responses and tumour angiogenesis, and suggest further evaluation and development of PBSA as a promising chemotherapeutic agent for the treatment of ovarian cancer.


Assuntos
Imidazóis/farmacologia , Neovascularização Patológica/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Piridinas/farmacologia , Adipatos/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Fase G1/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Succinatos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Neurochem Res ; 45(10): 2352-2363, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32671629

RESUMO

It is questionable whether intermittent fasting (IF) protects against brain ischemic injury. This study examined whether IF increased anti-inflammatory cytokines and protected neurons from ischemia-reperfusion injury in the gerbil hippocampus. Gerbils were subjected to 1-day alternating fasting as IF for 1, 2, or 3 months and assigned to sham or 5 min of transient ischemia. We examined the changes in anti-inflammatory cytokines (IL-4 and IL-13), neurons and IgG by immunohistochemistry or immunofluorescence staining in the cornu ammonis 1 (CA1) region of the hippocampus before and after ischemia. IF increased IL-13 immunoreactivity in the CA1 region before ischemia, but did not affect IL-4 immunoreactivity. After ischemia, IL-13 and 4 immunoreactivities in the CA1 region were significantly lower in IF gerbils than in non-IF gerbils. In the IF gerbils, the CA1 pyramidal neurons were not protected from ischemic injury; in these gerbils, strong IgG immunoreactivity was seen in the CA1 parenchyma, indicating leakage of the BBB. In brief, IF increased IL-13 in the CA1 region, but these neurons were not protected from transient ischemic injury evidenced by IgG immunoreactivity in the CA1 parenchyma. This study indicates that IF increased some anti-inflammatory cytokines but did not afford neuroprotection against ischemic insults via BBB disruption.


Assuntos
Barreira Hematoencefálica/metabolismo , Jejum/fisiologia , Hipocampo/fisiopatologia , Interleucina-13/metabolismo , Células Piramidais/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Animais , Gerbillinae , Hipocampo/metabolismo , Masculino , Traumatismo por Reperfusão/metabolismo
13.
Mar Drugs ; 18(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326571

RESUMO

Laminarin is a polysaccharide isolated from brown algae that has various biological and pharmacological activities, such as antioxidant and anti-inflammatory properties. We recently reported that pretreated laminarin exerted neuroprotection against transient forebrain ischemia/reperfusion (IR) injury when we pretreated with 50 mg/kg of laminarin once a day for seven days in adult gerbils. However, there have been no studies regarding a neuroprotective effect of pretreated laminarin against IR injury in aged animals and its related mechanisms. Therefore, in this study, we intraperitoneally inject laminarin (50 mg/kg) once a day to aged gerbils for seven days before IR (5-min transient ischemia) surgery and examine the neuroprotective effect of laminarin treatment and the mechanisms in the gerbil hippocampus. IR injury in vehicle-treated gerbils causes loss (death) of pyramidal neurons in the hippocampal CA1 field at five days post-IR. Pretreatment with laminarin effectively protects the CA1 pyramidal neurons from IR injury. Regarding the laminarin-treated gerbils, production of superoxide anions, 4-hydroxy-2-nonenal expression and pro-inflammatory cytokines [interleukin(IL)-1ß and tumor necrosis factor-α] expressions are significantly decreased in the CA1 pyramidal neurons after IR. Additionally, laminarin treatment significantly increases expressions of superoxide dismutase and anti-inflammatory cytokines (IL-4 and IL-13) in the CA1 pyramidal neurons before and after IR. Taken together, these findings indicate that laminarin can protect neurons from ischemic brain injury in an aged population by attenuating IR-induced oxidative stress and neuroinflammation.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Glucanos/farmacologia , Inflamação/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Gerbillinae , Hipocampo/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção , Superóxido Dismutase/metabolismo
14.
Appl Microbiol Biotechnol ; 103(20): 8403-8411, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31375882

RESUMO

Although many ß-agarases that hydrolyze the ß-1,4 linkages of agarose have been biochemically characterized, only three α-agarases that hydrolyze the α-1,3 linkages are reported to date. In this study, a new α-agarase, AgaWS5, from Catenovulum sediminis WS1-A, a new agar-degrading marine bacterium, was biochemically characterized. AgaWS5 belongs to the glycoside hydrolase (GH) 96 family. AgaWS5 consists of 1295 amino acids (140 kDa) and has the 65% identity to an α-agarase, AgaA33, obtained from an agar-degrading bacterium Thalassomonas agarivorans JAMB-A33. AgaWS5 showed the maximum activity at a pH and temperature of 8 and 40 °C, respectively. AgaWS5 showed a cold-tolerance, and it retained more than 40% of its maximum enzymatic activity at 10 °C. AgaWS5 is predicted to have several calcium-binding sites. Thus, its activity was slightly enhanced in the presence of Ca2+, and was strongly inhibited by EDTA. The Km and Vmax of AgaWS5 for agarose were 10.6 mg/mL and 714.3 U/mg, respectively. Agarose-liquefication, thin layer chromatography, and mass and NMR spectroscopic analyses demonstrated that AgaWS5 is an endo-type α-agarase that degrades agarose and mainly produces agarotetraose. Thus, in this study, a novel cold-adapted GH96 agarotetraose-producing α-agarase was identified.


Assuntos
Alteromonadaceae/enzimologia , Temperatura Baixa , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Estabilidade Enzimática , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Homologia de Sequência de Aminoácidos
15.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540405

RESUMO

Compelling evidence from preclinical and clinical studies has shown that mild hypothermia is neuroprotective against ischemic stroke. We investigated the neuroprotective effect of post-risperidone (RIS) treatment against transient ischemic injury and its mechanisms in the gerbil brain. Transient ischemia (TI) was induced in the telencephalon by bilateral common carotid artery occlusion (BCCAO) for 5 min under normothermic condition (37 ± 0.2 °C). Treatment of RIS induced hypothermia until 12 h after TI in the TI-induced animals under uncontrolled body temperature (UBT) compared to that under controlled body temperature (CBT) (about 37 °C). Neuroprotective effect was statistically significant when we used 5 and 10 mg/kg doses (p < 0.05, respectively). In the RIS-treated TI group, many CA1 pyramidal neurons of the hippocampus survived under UBT compared to those under CBT. In this group under UBT, post-treatment with RIS to TI-induced animals markedly attenuated the activation of glial cells, an increase of oxidative stress markers [dihydroethidium, 8-hydroxy-2' -deoxyguanosine (8-OHdG), and 4-Hydroxynonenal (4-HNE)], and a decrease of superoxide dismutase 2 (SOD2) in their CA1 pyramidal neurons. Furthermore, RIS-induced hypothermia was significantly interrupted by NBOH-2C-CN hydrochloride (a selective 5-HT2A receptor agonist), but not bromocriptine mesylate (a D2 receptor agonist). Our findings indicate that RIS-induced hypothermia can effectively protect neuronal cell death from TI injury through attenuation of glial activation and maintenance of antioxidants, showing that 5-HT2A receptor is involved in RIS-induced hypothermia. Therefore, RIS could be introduced to reduce body temperature rapidly and might be applied to patients for hypothermic therapy following ischemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Risperidona/uso terapêutico , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patologia , Hipotermia/induzido quimicamente , Hipotermia Induzida/métodos , Masculino , Estresse Oxidativo/efeitos dos fármacos
16.
Neurochem Res ; 43(11): 2102-2110, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30203401

RESUMO

Macrophage inflammatory protein-3α (MIP-3α) and its sole receptor, CCR6, play pivotal roles in neuroinflammatory processes induced by brain ischemic insults. In this study, we investigated transient ischemia-induced changes in MIP-3α and CCR6 protein expressions in the hippocampal CA1 area following 5 min of transient global cerebral ischemia (tgCI) in gerbils. Both MIP-3α and CCR6 immunoreactivities were very strongly expressed in pyramidal neurons of the CA1 area from 6 h to 1 day after tgCI and were hardly shown 4 days after tgCI. In addition, strong MIP-3α immunoreactivity was newly expressed in astrocytes 6 h after tgCI. These results indicate that tgCI causes apparent changes in MIP-3α and CCR6 expressions in pyramidal neurons and astrocytes in the hippocampal CA1 area and suggest that tgCI-induced changes in MIP-3α and CCR6 expressions might be closely associated with neuroinflammatory processes in brain ischemic regions.


Assuntos
Astrócitos/metabolismo , Quimiocina CCL20/metabolismo , Ataque Isquêmico Transitório/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Morte Celular/fisiologia , Gerbillinae , Masculino , Neurônios/metabolismo , Células Piramidais/metabolismo , Receptores CCR6/metabolismo , Fatores de Tempo
17.
Nanotechnology ; 29(32): 325602, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29786617

RESUMO

In the study, a hollow boron-doped diamond (BDD) nanostructure electrode is fabricated to increase the reactive surface area for electrochemical applications. Tungsten oxide nanorods are deposited on the silicon substrate as a template by the hot filament chemical vapor deposition (HFCVD) method. The template is coated with a 100 nm BDD layer deposited by HFCVD to form a core-shell nanostructure. The WO x core is finally electrochemically dissolved to form hollow BDD nanostructure. The fabricated hollow BDD nanostructure electrode is investigated via scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The specific surface areas of the electrodes were analyzed and compared by using Brunauer-Emmett-Teller method. Furthermore, cyclic voltammetry and chronocoulometry are used to investigate the electrochemical characteristics and the reactive surface area of the as-prepared hollow BDD nanostructure electrode. A hollow BDD nanostructure electrode exhibits a reactive area that is 15 times that of a planar BDD thin electrode.

18.
J Neuroinflammation ; 14(1): 122, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645333

RESUMO

BACKGROUND: Blood-brain barrier (BBB) breakdown and inflammation are critical events in ischemic stroke, contributing to aggravated brain damage. The BBB mainly consists of microvascular endothelial cells sealed by tight junctions to protect the brain from blood-borne substances. Thus, the maintenance of BBB integrity may be a potential target for neuroprotection. Sac-1004, a pseudo-sugar derivative of cholesterol, enhances the endothelial barrier by the stabilization of the cortical actin ring. RESULTS: Here, we report on the protective effects of Sac-1004 on cerebral ischemia-reperfusion (I/R) injury. Treatment with Sac-1004 significantly blocked the interleukin-1ß-induced monolayer hyperpermeability of human brain microvascular endothelial cells (HBMECs), loss of tight junctions, and formation of actin stress fiber. Sac-1004 suppressed the expression of adhesion molecules, adhesion of U937 cells, and activation of nuclear factor-κB in HBMECs. Using a rat model of transient focal cerebral ischemia, it was shown that Sac-1004 effectively ameliorated neurological deficits and ischemic damage. In addition, Sac-1004 decreased BBB leakage and rescued tight junction-related proteins. Moreover, the staining of CD11b and glial fibrillary acidic protein showed that Sac-1004 inhibited glial activation. CONCLUSIONS: Taken together, these results demonstrate that Sac-1004 has neuroprotective activities through maintaining BBB integrity, suggesting that it is a great therapeutic candidate for stroke.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Saponinas/uso terapêutico , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Endotélio Vascular/diagnóstico por imagem , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Inflamação/diagnóstico por imagem , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Saponinas/farmacologia
19.
Cell Mol Neurobiol ; 37(3): 563-569, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27233899

RESUMO

Redd1, also known as RTP801/Dig2/DDIT4, is a stress-induced protein and marked changes of Redd1 expression occurs in response to hypoxia or cerebral ischemia. In the present study, we examined the time-course changes in Redd1 protein expressions in the rat hippocampal CA1 region following chronic cerebral hypoperfusion (CCH) induced by permanent bilateral common carotid arteries occlusion (2VO). Redd1 immunoreactivity in the pyramidal neurons of the hippocampal CA1 region was increased at 7 days after 2VO surgery, and then the immunoreactivity was decreased with time. Especially, very weak Redd1 immunoreactivity was observed in the hippocampal CA1 region at 28 days after 2VO surgery. Western blot analysis showed that Redd1 level in the hippocampal CA1 region was significantly increased at 7 days following CCH and significantly decreased at 28 days after 2VO surgery, compared with that of the sham-operated group. These results indicate that Redd1 expressions is markedly changed in the hippocampal CA1 region following CCH and that change of Redd1 expression may be associated with the CCH-induced neuronal damage in the hippocampal CA1 region.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Proteínas Repressoras/metabolismo , Animais , Western Blotting , Doença Crônica , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Fatores de Tempo , Fatores de Transcrição
20.
Cell Mol Neurobiol ; 36(5): 821-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26526334

RESUMO

Proline-rich Akt substrate of 40-kDa (PRAS40) is one of the important interactive linkers between Akt and mTOR signaling pathways. The increase of PRAS40 is related with the reduction of brain damage induced by cerebral ischemia. In the present study, we investigated time-dependent changes in PRAS40 and phospho-PRAS40 (p-PRAS40) immunoreactivities in the hippocampal CA1 region of the gerbil after 5 min of transient cerebral ischemia. PRAS40 immunoreactivity in the CA1 region was decreased in pyramidal neurons from 12 h after ischemic insult in a time-dependent manner, and, at 5 days post-ischemia, PRAS40 immunoreactivity was newly expressed in astrocytes. p-PRAS40 immunoreactivity in the CA1 pyramidal neurons was hardly found 12 h and apparently detected again 1 and 2 days after ischemic insult. At 5 days post-ischemia, p-PRAS40 immunoreactivity in the CA1 pyramidal neurons was not found. These results indicate that ischemia-induced changes in PRAS40 and p-PRAS40 immunoreactivities in CA1 pyramidal neurons and astrocytes may be closely associated with delayed neuronal death in the hippocampal CA1 region following transient cerebral ischemia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Ataque Isquêmico Transitório/metabolismo , Células Piramidais/metabolismo , Animais , Morte Celular/fisiologia , Gerbillinae , Imuno-Histoquímica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA