Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 443(1-2): 193-204, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29188535

RESUMO

c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.


Assuntos
Senescência Celular , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/biossíntese , Epitélio Pigmentado da Retina/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Transformada , Proteínas de Ligação a DNA , Células Epiteliais/citologia , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Ligação a RNA , Epitélio Pigmentado da Retina/citologia , Fatores de Tempo
2.
J Biol Chem ; 290(49): 29617-28, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26468278

RESUMO

JLP (JNK-associated leucine zipper protein) is a scaffolding protein that interacts with various signaling proteins associated with coordinated regulation of cellular process such as endocytosis, motility, neurite outgrowth, cell proliferation, and apoptosis. Here we identified PLK1 (Polo-like kinase 1) as a novel interaction partner of JLP through mass spectrometric approaches. Our results indicate that JLP is phospho-primed by PLK1 on Thr-351, which is recognized by the Polo box domain of PLK1 leading to phosphorylation of JLP at additional sites. Stable isotope labeling by amino acids in cell culture and quantitative LC-MS/MS analysis was performed to identify PLK1-dependent JLP-interacting proteins. Treatment of cells with the PLK1 kinase inhibitor BI2536 suppressed binding of the Forkhead box protein K1 (FOXK1) transcriptional repressor to JLP. JLP was found to interact with PLK1 and FOXK1 during mitosis. Moreover, knockdown of PLK1 affected the interaction between JLP and FOXK1. FOXK1 is a known transcriptional repressor of the CDK inhibitor p21/WAF1, and knockdown of JLP resulted in increased FOXK1 protein levels and a reduction of p21 transcript levels. Our results suggest a novel mechanism by which FOXK1 protein levels and activity are regulated by associating with JLP and PLK1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antimitóticos/química , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Células HeLa , Humanos , Espectrometria de Massas , Camundongos , Mitose , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Pteridinas/química , Transdução de Sinais , Espectrometria de Massas em Tandem , Quinase 1 Polo-Like
3.
Biochim Biophys Acta ; 1843(9): 2027-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24821626

RESUMO

c-MYC is an oncogenic transcription factor that is degraded by the proteasome pathway. However, the mechanism that regulates delivery of c-MYC to the proteasome for degradation is not well characterized. Here, the results show that the motor protein complex Kinesin-1 transports c-MYC to the cytoplasm for proteasomal degradation. Inhibition of Kinesin-1 function enhanced ubiquitination of c-MYC and induced aggregation of c-MYC in the cytoplasm. Transport studies showed that the c-MYC aggregates moved from the nucleus to the cytoplasm and KIF5B is responsible for the transport in the cytoplasm. Furthermore, inhibition of the proteasomal degradation process also resulted in an accumulation of c-MYC aggregates in the cytoplasm. Moreover, Kinesin-1 was shown to interact with c-MYC and the proteasome subunit S6a. Inhibition of Kinesin-1 function also reduced c-MYC-dependent transformation activities. Taken together, the results strongly suggest that Kinesin-1 transports c-MYC for proteasomal degradation in the cytoplasm and the proper degradation of c-MYC mediated by Kinesin-1 transport is important for transformation activities of c-MYC. In addition, the results indicate that Kinesin-1 transport mechanism is important for degradation of a number of other proteins as well.


Assuntos
Citoplasma/metabolismo , Cinesinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Transformada , Citoplasma/efeitos dos fármacos , Genes Dominantes , Células HEK293 , Células HeLa , Humanos , Lactonas/farmacologia , Leupeptinas/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mutantes/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/química , RNA Interferente Pequeno/metabolismo , Rosa Bengala/farmacologia , Ubiquitinação/efeitos dos fármacos
4.
J Biol Chem ; 285(6): 3548-3553, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19959466

RESUMO

JLP (JNK-associated leucine zipper protein) is a novel scaffolding protein involved in JNK signaling. Although it is known that JLP is highly expressed in brain, the biological function of JLP in neuronal systems remains unknown. Here, we report a novel interaction between JLP and SCG10 (superior cervical ganglia clone 10), which is a microtubule-destabilizing factor that is essential for neurite outgrowth. Inhibition of endogenous JLP expression using small interference RNA methodology strongly enhanced nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Our results show that JLP negatively regulates NGF-induced neurite outgrowth by decreasing the level of phosphorylated SCG10. Furthermore, inhibition of JNK phosphorylation by a small molecule inhibitor, SP600125, resulted in inhibition of SCG10 phosphorylation and inhibition of neurite growth. Taken together, our results suggest that JLP negatively regulates NGF-induced neurite outgrowth through a sequestering mechanism that results in an attenuation of NGF-induced SCG10 phosphorylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Neuritos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antracenos/farmacologia , Células COS , Proteínas de Transporte/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Immunoblotting , Imunoprecipitação , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Membrana/genética , Proteínas dos Microtúbulos , Mutação , Fator de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neuritos/efeitos dos fármacos , Células PC12 , Fosforilação/efeitos dos fármacos , Ligação Proteica , Interferência de RNA , Ratos , Transfecção
5.
J Cell Biol ; 175(3): 383-8, 2006 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17074887

RESUMO

The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in cell differentiation, but the signaling mechanisms by which it is activated during this process are largely unknown. Cdo is an immunoglobulin superfamily member that functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that the Cdo intracellular region interacts with JLP, a scaffold protein for the p38alpha/beta MAPK pathway. Cdo, JLP, and p38alpha/beta form complexes in differentiating myoblasts, and Cdo and JLP cooperate to enhance levels of active p38alpha/beta in transfectants. Primary myoblasts from Cdo(-/-) mice, which display a defective differentiation program, are deficient in p38alpha/beta activity, and the expression of an activated form of MKK6 (an immediate upstream activator of p38) rescues the ability of Cdo(-/-) cells to differentiate. These results document a novel mechanism of signaling during cell differentiation: the interaction of a MAPK scaffold protein with a cell surface receptor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Desenvolvimento Muscular , Transdução de Sinais , Animais , Células COS , Diferenciação Celular , Chlorocebus aethiops , Ativação Enzimática , MAP Quinase Quinase 6/metabolismo , Camundongos , Camundongos Knockout , Mioblastos/metabolismo , Ligação Proteica , Interferência de RNA , Transfecção , Técnicas do Sistema de Duplo-Híbrido
6.
Cell Signal ; 20(6): 1052-60, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18304781

RESUMO

Stem cells represent a unique population of cells with self-renewal capacity. However, the molecular control of self-renewal and differentiation of stem cells has remained enigmatic. Here, we show that short-type PB-cadherin (STPB-C) promoted self-renewal of spermatogonial stem cells (SSCs) via activating Janus kinase/signal transducer and activator of transcription (JAK-STAT) and phosphoinositide-3 kinase (PI3-K)/Akt, and blocking transforming growth factor (TGF)-beta1 signaling. These data were obtained with varied approaches, including the use of RNA interference (RNAi), SSC cultures infected by STPB-C retroviral vector, bromodeoxyuridine (BrdU) incorporation assay, and other techniques. These findings have important implications for germ cell biology and create the possibility of using SSCs for biotechnology and medicine. They are also critical in understanding tissue homeostasis, the aging process, tumor formation and degenerative diseases.


Assuntos
Caderinas/metabolismo , Transdução de Sinais , Espermatogônias/citologia , Células-Tronco/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/antagonistas & inibidores , Proliferação de Células , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Janus Quinases/metabolismo , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição STAT/metabolismo , Células-Tronco/citologia , Células-Tronco/enzimologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores
7.
Sci Adv ; 5(8): eaav0318, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31803841

RESUMO

JLP belongs to the JIP family whose members serve as scaffolding proteins that link motor proteins and their cargo for intracellular transport. Although JLP is mainly cytoplasmic, it accumulates as a focus in the perinuclear region when stimulated by extracellular stimuli. Focus formation, which changes the nucleus shape and concentrates the nuclear pores, depends on p38MAPK activation and the dynein retrograde motor protein complex. Extracellular stimuli trigger the tethering of PLK1 to the centrosome by JLP, leading to centrosome maturation and microtubule array formation. The centrosome localization domain of JLP is important for the binding of the centrosome and the formation of the JLP focus and the microtubule array. Furthermore, the formation of the JLP focus and the microtubule array is interdependent and important for the transport of NF-κB p65 to the nucleus and its unloading therein. In conclusion, JLP exhibits multiple functions in the nuclear translocation of NF-κB p65.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Citoplasma/metabolismo , Microtúbulos/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Dineínas/metabolismo , Células HEK293 , Humanos , Cinesinas/metabolismo , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia , Fator de Transcrição RelA
8.
Mol Cell Biol ; 23(18): 6631-45, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12944488

RESUMO

The c-myb proto-oncogene encodes two alternatively spliced mRNAs, which in turn code for proteins of 75 kDa and 89 kDa. It is at present unclear whether the two isoforms of c-Myb perform identical functions or whether they mediate different biological effects. To assess their role in apoptotic death of hematopoietic cells, we expressed the two isoforms of c-Myb in the murine myeloid cell lines 32Dcl3 and FDCP1. Our results show that while ectopic overexpression of p75 c-Myb results in the acceleration of cell death, similar overexpression of p89 c-Myb results in the protection of cells from apoptotic death. An analysis of gene expression changes with mouse cDNA expression arrays revealed that while p75 c-Myb blocked the expression of glutathione S-transferase micro mRNA, p89 c-Myb greatly enhanced the expression of this gene. These results were further confirmed by Northern blot analysis. Ectopic overexpression of the glutathione S-transferase micro gene in 32Dcl3 cells resulted in protection of cells from interleukin-3 withdrawal-induced cell death similar to that seen with the ectopic overexpression of p89 c-Myb. These results suggest that the two isoforms of c-Myb differentially regulate apoptotic death of myeloid cells through differential regulation of glutathione S-transferase micro gene expression.


Assuntos
Processamento Alternativo , Apoptose/fisiologia , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/patologia , Células da Medula Óssea/fisiologia , Caspases/metabolismo , Células Cultivadas , Grupo dos Citocromos c/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Interleucina-3/farmacologia , Camundongos , Mutação , Células Mieloides/patologia , Células Mieloides/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ativação Transcricional
9.
Drug Deliv ; 13(2): 159-64, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16423805

RESUMO

Fluorescent quantum dots (semiconductor nanocrystals) have the potential to revolutionize biological imaging, but their use has been limited by difficulties in obtaining quantum dots that are water soluble and biocompatible. The objectives of our research were to develop a methodology for encapsulation of cadnium-selenium (CdSe) quantum dots (QDs) in phospholipid nanoemulsion that mimics the natural lipoprotein core and to study their interactions with cultured non-small cell lung cancer cells (NSCLC). We found that CdSe QDs can be efficiently encapsulated in the phospholipid nanoemulsion. The QD nanoemulsion has a particle size approximately 80 nm and appears physically stable. The QD nanoemulsion interacts well with cells. The intensity of cellular fluorescence imaging increases with the cell incubation time, indicating more QDs were taken up by the cells, respectively. Two types of fluorescence microscopies confirm that QDs are primarily localized in the cytoplasm but not in the nucleus of the cells.


Assuntos
Lipoproteínas/química , Microscopia de Fluorescência/métodos , Fosfolipídeos/química , Pontos Quânticos , Tecnologia Farmacêutica/métodos , Compostos de Cádmio/química , Compostos de Cádmio/farmacocinética , Compostos de Cádmio/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Emulsões , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanoestruturas/química , Nanotecnologia/métodos , Nanotecnologia/tendências , Tamanho da Partícula , Compostos de Selênio/química , Compostos de Selênio/farmacocinética , Compostos de Selênio/farmacologia , Tecnologia Farmacêutica/tendências
10.
J Vis Exp ; (108): 53632, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26966786

RESUMO

Fluorescence microscopy is employed to identify Kinesin-1 cargos. Recently, the heavy chain of Kinesin-1 (KIF5B) was shown to transport the nuclear transcription factor c-MYC for proteosomal degradation in the cytoplasm. The method described here involves the study of a motorless KIF5B mutant for fluorescence microscopy. The wild-type and motorless KIF5B proteins are tagged with the fluorescent protein tdTomato. The wild-type tdTomato-KIF5B appears homogenously in the cytoplasm, while the motorless tdTomato-KIF5B mutant forms aggregates in the cytoplasm. Aggregation of the motorless KIF5B mutant induces aggregation of its cargo c-MYC in the cytoplasm. Hence, this method provides a visual means to identify the cargos of Kinesin-1. A similar strategy can be utilized to identify cargos of other motor proteins.


Assuntos
Citoplasma/química , Cinesinas/isolamento & purificação , Citoplasma/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Cinesinas/genética , Microscopia de Fluorescência/métodos , Mutação/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
11.
Immunobiology ; 218(6): 835-43, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23182713

RESUMO

Receptor internalization is a common mechanism underlying surface receptor down-regulation (and thus receptor signaling) upon its engagement with the cognate ligand. Tight regulation of surface CD40 expression is critical in regulating different functional properties of dendritic cell (DC). Engagement of CD40 on mature DC and the cognate CD40 ligand on T cell activates c-Jun N-terminal MAPK, p38 and ERK1/2 MAPK pathways in mature DC. JNK-associated leucine zipper protein (JLP) is a scaffolding protein that interacted with p38 and JNK. The molecular mechanism underlying CD40 internalization and its physiological impact on DC functions remained unclear. Here we reported that the engagement of CD40 on the LPS-activated DC down-regulated the surface expression of CD40. We examined the role of the JLP protein in DC differentiation, and in the regulation of DC function(s) in vitro. In contrast to the abundant JLP expression observed in immortal cell lines, primary immature DC expressed low levels of the JLP proteins. The induction of the JLP protein expression was observed in the LPS-mature DC that were activated by CD40 ligation, and also in the poly I:C stimulated DC. JLP-silenced DC was impaired in regulating CD40 surface expression upon LPS stimulation and CD40 induced receptor internalization. Such aberrant change in the regulation of surface CD40 expression was associated with an augmented capacity of the JLP-silenced DC in IL-12 production. Collectively, our data identified a novel role of a scaffolding protein JLP in the regulation of surface CD40 expression and fine-tuning of DC function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Antígenos CD40/imunologia , Células Dendríticas/imunologia , Regulação para Baixo/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Antígenos CD40/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Citometria de Fluxo , Células HEK293 , Células HeLa , Humanos , Interleucina-12/imunologia , Interleucina-12/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/imunologia , Poli I-C/farmacologia , Interferência de RNA
12.
J Med Chem ; 55(11): 5174-87, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22587519

RESUMO

Tubulin, the major structural component of microtubules, is a target for the development of anticancer agents. A series of (Z)-1-aryl-3-arylamino-2-propen-1-one (10) were synthesized and evaluated for antiproliferative activity in cell-based assay. The most active compound (Z)-1-(2-bromo-3,4,5-trimethoxyphenyl)-3-(3-hydroxy-4-methoxyphenylamino)prop-2-en-1-one (10ae) was tested in 20 tumor cell lines including multidrug resistant phenotype and was found to induce apoptosis in all these cell lines with similar GI(50) values. Flow cytometry studies showed that 10ae arrested the cells in G2/M phase of cell cycle. In addition to G2/M block, these compounds caused microtubule stabilization like paclitaxel and induced apoptosis via activation of the caspase family. The observations made in this investigation demonstrate that (Z)-1-Aryl-3-arylamino-2-propen-1-one (10) represents a new class of microtubule-stabilizing agents.


Assuntos
Alcenos/síntese química , Aminofenóis/síntese química , Antineoplásicos/síntese química , Moduladores de Tubulina/síntese química , Tubulina (Proteína)/metabolismo , Alcenos/química , Alcenos/farmacologia , Aminofenóis/química , Aminofenóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Fase G2/efeitos dos fármacos , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Polimerização , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/ultraestrutura , Estereoisomerismo , Relação Estrutura-Atividade , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
13.
Neoplasia ; 13(4): 358-64, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21472140

RESUMO

The activated mutants of the α-subunits of G proteins G(12) and G(13) have been designated as the gep oncogenes owing to their ability to stimulate diverse oncogenic signaling pathways that lead to neoplastic transformation of fibroblast cell lines and tumorigenesis in nude mice models. Studies from our laboratory as well as others have shown that the growth-promoting activities of Gα(12) and Gα(13) involve potent activation of c-Jun N-terminal kinases (JNKs). Our previous studies have indicated that the JNK-interacting leucine zipper protein (JLP), a scaffold protein involved in the structural and functional organization of the JNK/p38 mitogen-activated protein kinase module, tethers Gα(12) and Gα(13) to the JNK signaling module. In the present study, in addition to demonstrating the physical association between JLP and Gα(12), we show that this interaction is enhanced by the receptor- or mutation-mediated activation of Gα(12). We also establish that JLP interacts with Gα(12) through the C-terminal domain that has been previously identified to be involved in binding to Gα(13). Furthermore, using this C-terminal domain as a competitively inhibitor of JLP that can disrupt Gα(12)-JLP interaction, we demonstrate that JLP is required for the stimulation of JNK by Gα(12). Our results also indicate that such JLP interaction is required for Gα(12) as well as Gα(13)-mediated neoplastic transformation of JLP. These studies demonstrate for the first time a functional role for JLP in the gep oncogene-regulated neoplastic signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/fisiologia , Camundongos , Células NIH 3T3 , Ligação Proteica/genética , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Mapeamento de Interação de Proteínas , Transfecção
14.
Am J Physiol Lung Cell Mol Physiol ; 294(6): L1187-96, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18375741

RESUMO

Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.


Assuntos
Quimiotaxia/fisiologia , Pulmão/citologia , Pneumonia/fisiopatologia , Receptores CXCR3/fisiologia , Adulto , Processamento Alternativo , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Dexametasona/farmacologia , Humanos , Pulmão/embriologia , Pulmão/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transfecção , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Biochemistry ; 44(43): 14090-6, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16245925

RESUMO

Scaffolding proteins play a critical role in conferring specificity and fidelity to signaling pathways. The JNK-interacting leucine zipper protein (JLP) has been identified as a scaffolding protein involved in linking components of the JNK signaling module. Galpha(12) and Galpha(13), the alpha-subunits of heterotrimeric G proteins G12 and G13, respectively, stimulate the JNK module in diverse cell types. Here, we report that Galpha(13) physically interacts with JLP, and this interaction enhances Galpha(13)-mediated JNK activation. We also demonstrate endogenous interaction between JLP and Galpha(13) in MCF-7 cells. JLP interaction is specific to the G12 family of alpha-subunits via its C-terminal domain (termed GID-JLP), spanning amino acids 1165-1307, and this interaction is more pronounced with the mutationally or functionally activated form of Galpha(13) compared to that of wild-type Galpha(13). The presence of a ternary complex consisting of Galpha(13), JLP, and JNK suggests a role for JLP in tethering Galpha(13) to the signaling components involved in JNK activation. Coexpression of GID-JLP disrupts ternary complex formation in addition to attenuating Galpha(13)-stimulated JNK activity. These findings identify JLP as a novel scaffolding protein in the Galpha(13)-mediated JNK signaling pathway.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Zíper de Leucina , Transdução de Sinais/fisiologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Proteínas Quinases JNK Ativadas por Mitógeno/química , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Mutação , Ligação Proteica
16.
J Biol Chem ; 280(34): 30185-91, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15987681

RESUMO

Scaffolding proteins exist in eukaryotes to properly assemble signaling proteins into specific multimeric functional complexes. JLP is a novel leucine zipper protein belonging to a family of scaffolding proteins that assemble JNK signaling modules. JLP is a proline-rich protein that contains two leucine zipper domains and a highly conserved C-terminal domain. We have identified kinesin light chain 1 (KLC1) as a binding partner for the second leucine zipper domain of JLP using yeast two-hybrid screening. The interaction domain of KLC1 was mapped to its tetratripeptide repeat, which contains a novel leucine zipper-like domain that is crucial for the interaction with JLP. Mutations of Leu-280, Leu-287, Val-294, and Leu-301 within this domain of KLC1 disrupted its ability to associate with JLP. Immunofluorescence studies showed that JLP and KLC1 co-localized in the cytoplasm and that the localization of JLP was dependent on its second leucine zipper. Ectopic expression of a dominant negative form of KLC1 resulted in the mislocalization of endogenous JLP. Moreover, the association between JLP and KLC1 occurred in vivo and was important in the formation of ternary complex with JNK1. These results identify a novel protein-protein interaction between KLC1 and JLP that involves leucine zipper-like domains and support the role of motor proteins in the spatial regulation of signaling modules.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Leucina/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular , Clonagem Molecular , Citoplasma/metabolismo , DNA Complementar/metabolismo , Genes Dominantes , Vetores Genéticos , Glutationa Transferase/metabolismo , Imunoprecipitação , Cinesinas , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Células NIH 3T3 , Neurônios/citologia , Neurônios/metabolismo , Peptídeos/química , Prolina/química , Ligação Proteica , Estrutura Terciária de Proteína , Retroviridae/genética , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , Valina/química
17.
J Biol Chem ; 278(13): 11480-8, 2003 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-12525485

RESUMO

The c-myb proto-oncogene plays a central role in hematopoiesis and encodes a major translational product of 75 kDa. c-Myb is highly expressed in immature hematopoietic cells, and its expression is down-regulated during terminal differentiation. Deregulated expression of c-Myb has been shown to block terminal differentiation of hematopoietic cells. Here we have studied the mechanism of action and the nature of target genes through which c-Myb mediates the block in differentiation of 32Dcl3 murine myeloid cells. We show that the ectopic overexpression of c-Myb in 32Dcl3 cells results in the overexpression of c-Myc. However, enforced expression of c-Myc in 32Dcl3 cells did not alter the normal pattern of differentiation. In addition, expression of dominant-negative mutants of c-Myc relieved c-Myb-mediated block in differentiation. These results led us to conclude that c-myc is a target gene of c-Myb and activation of the c-myc gene is a necessary event in Myb-mediated transformation. However, c-Myc expression alone is inadequate to elicit the phenotypic effects seen with Myb-mediated block in differentiation of myeloid cells, suggesting that activation of additional transcriptional targets by c-Myb plays a critical role in this process.


Assuntos
Diferenciação Celular/fisiologia , Granulócitos/citologia , Proteínas Proto-Oncogênicas c-myb/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Northern Blotting , Linhagem Celular , Fator Estimulador de Colônias de Granulócitos/fisiologia , Camundongos , Transgenes
18.
Proc Natl Acad Sci U S A ; 99(22): 14189-94, 2002 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-12391307

RESUMO

Extracellular signals are transduced into cells through mitogen-activated protein kinases (MAPKs), which are activated by their upstream kinases. Recently, families of scaffolding proteins have been identified to tether specific combinations of these kinases along specific signaling pathways. Here we describe a protein, JLP (c-Jun NH2-terminal kinase-associated leucine zipper protein), which acts as a scaffolding protein to bring together Max and c-Myc along with JNK (c-Jun NH2-terminal kinase) and p38MAPK, as well as their upstream kinases MKK4 (MAPK kinase 4) and MEKK3 (MAPK kinase kinase 3). Thus, JLP defines a family of scaffolding proteins that bring MAPKs and their target transcription factors together for the execution of specific signaling pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sequências Hélice-Alça-Hélice , Zíper de Leucina , MAP Quinase Quinase 4 , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fatores de Transcrição de Zíper de Leucina Básica , Sítios de Ligação , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Dimerização , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase Quinase 3 , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA