RESUMO
Background: Chemical modifications on RNA profoundly affect RNA function and regulation. m6A, the most abundant RNA modification in eukaryotes, plays a pivotal role in diverse cellular processes and disease mechanisms. However, its importance is understudied in human CKD samples regarding its influence on pathological mechanisms. Methods: Liquid chromatographytandem mass spectrometry and methylated RNA immunoprecipitation sequencing were used to examine alterations in m6A levels and patterns in CKD samples. Overexpression of the m6A writer METTL3 in cultured kidney tubular cells was performed to confirm the effect of m6A in tubular cells and explore the biological functions of m6A modification on target genes. In addition, tubule-specific deletion of Mettl3 (Ksp-Cre Mettl3f/f) mice and antisense oligonucleotides inhibiting Mettl3 expression were used to reduce m6A modification in an animal kidney disease model. Results: By examining 127 human CKD samples, we observed a significant increase in m6A modification and METTL3 expression in diseased kidneys. Epitranscriptomic analysis unveiled an enrichment of m6A modifications in transcripts associated with the activation of inflammatory signaling pathways, particularly the cyclic guanosine monophosphateAMP synthase (cGAS)-stimulator of IFN genes (STING) pathway. m6A hypermethylation increased mRNA stability in cGAS and STING1 as well as elevated the expression of key proteins within the cGAS-STING pathway. Both the tubule-specific deletion of Mettl3 and the use of antisense oligonucleotides to inhibit Mettl3 expression protected mice from inflammation, reduced cytokine expression, decreased immune cell recruitment, and attenuated kidney fibrosis. Conclusions: Our research revealed heightened METTL3-mediated m6A modification in fibrotic kidneys, particularly enriching the cGAS-STING pathway. This hypermethylation increased mRNA stability for cGAS and STING1, leading to sterile inflammation and fibrosis.
Assuntos
Adenosina , Fibrose , Proteínas de Membrana , Metiltransferases , Nucleotidiltransferases , RNA Mensageiro , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Mensageiro/metabolismo , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Humanos , Transdução de Sinais , Camundongos , Rim/patologia , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologiaRESUMO
Protein S-sulfhydration involves the regulation of various protein functions, and resolving the S-sulfhydrated proteome (persulfidome) allows for a deeper exploration of various redox regulations. Therefore, we designed a reducible covalent capture method for isolating S-sulfhydrated proteins, which can analyze the persulfidome in biological samples and monitor specific S-sulfhydrated proteins. In this study, we applied this method to reveal the S-sulfhydration levels of proteins, including 3-phosphoglyceraldehyde dehydrogenase, NFκB/p65, and nucleolin. Furthermore, this technique can be used to enrich S-sulfhydrated peptides, aiding in the determination of protein S-sulfhydration modification sites. Finally, we observed that the S-sulfhydration and oxidation of nucleolin on the C543 residue correlate with its nuclear translocation, downstream regulation of p53, Bcl-xL, and Bcl-2 RNA levels and protein expression, as well as the protective function against oxidative stress. Therefore, this method may facilitate the understanding of the regulation of protein function by redox perturbation.
Assuntos
Nucleolina , Oxirredução , Fosfoproteínas , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/análise , Humanos , Proteoma/análise , Proteoma/químicaRESUMO
The employment of liquid chromatography-mass spectrometry (LC-MS) untargeted and targeted metabolomics has led to the discovery of novel biomarkers and improved the understanding of various disease mechanisms. Numerous strategies have been reported to expand the metabolite coverage in LC-MS-untargeted and targeted metabolomics. To improve the sensitivity of low-abundance or poor-ionized metabolites for reducing the amount of clinical sample, chemical derivatization methods are used to target different functional groups. Proper sample preparation is beneficial for reducing the matrix effect, maintaining the stability of the LC-MS system, and increasing the metabolite coverage. Machine learning has recently been integrated into the workflow of LC-MS metabolomics to accelerate metabolite identification and data-processing automation, and increase the accuracy of disease classification and clinical outcome prediction. Due to the rapidly growing utility of LC-MS metabolomics in discovering disease markers, this review will address the recent advances in the field and offer perspectives on various strategies for expanding metabolite coverage, chemical derivatization, sample preparation, clinical disease markers, and machining learning for disease modeling.
RESUMO
Because hydrogen sulfide (H2S) is classified as a gaseous signaling molecule, protein S-sulfhydration is known to be one of the mechanisms by which H2S signals are conducted. PTP1B, a negative regulator in insulin signaling, has been found to be S-sulfhydrated at Cys215-SH to form Cys215-SSH in response to endoplasmic reticulum (ER) stress. Therefore, we aimed to understand the change in PTP1B S-sulfhydration and cellular redox homeostasis in response to insulin stimulation. We demonstrated a feasible PEG-switch method to determine the levels of PTP1B S-sulfhydration. According to the results obtained from HEK293T and MDA-MB-231 cells, insulin induced a change in PTP1B S-sulfhydration that was similar to the change in Insulin receptor substrate 1 (IRS1) phosphorylation in both cell lines. However, insulin-induced PTP1B S-sulfhydration and IRS1 phosphorylation were only significantly affected by metformin in HEK293T cells. Insulin also induced an increase in reactive oxygen species (ROS) in both cell lines. However, the level of H2S, GSH, and GSSG was only significantly affected by insulin and metformin in HEK293T cells. HEK293T cells maintained high levels of H2S and cysteine, but low levels of GSSG and GSH in general compared to MDA-MB-231 cells. From these findings, we suggest that PTP1B activity is modulated by H2S and redox-regulated S-sulfhydration during insulin signaling.
Assuntos
Sulfeto de Hidrogênio , Insulina , Humanos , Dissulfeto de Glutationa/metabolismo , Células HEK293 , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Insulina/metabolismo , Oxirredução , Sulfetos/metabolismoRESUMO
Drug combination therapy is a key approach in cancer treatments, aiming to improve therapeutic efficacy and overcome drug resistance. Evaluation of intracellular response in cancer cells to drug treatment may disclose the underlying mechanism of drug resistance. In this study, we aimed to investigate the effect of osimertinib, a tyrosine kinase inhibitor (TKI), and a curcumin derivative, 35d, on HCC827 cells and tumors by analyzing alterations in metabolome and related regulations. HCC827 tumor-bearing SCID mice and cultured HCC827 cells were separately examined. The treatment comprised four conditions: vehicle-only, 35d-only, osimertinib-only, and a combination of 35d and osimertinib. The treated tumors/cells were subsequently subjected to metabolomics profiling, fatty acyl analysis, mitochondrial potential measurement, and cell viability assay. Osimertinib induced changes in the ratio of short-chain (SC) to long-chain (LC) fatty acyls, particularly acylcarnitines (ACs), in both tumors and cells. Furthermore, 35d enhanced this effect by further lowering the SC/LC ratio of most ACs. Osimertinib and 35d also exerted detrimental effects on mitochondria through distinct mechanisms. Osimertinib upregulated the expression of carnitine palmitoyltransferase I (CPTI), while 35d induced the expression of heat shock protein 60 (HSP60). The alterations in ACs and CPTI were correlated with mitochondrial dysfunction and inhibited cell growth. Our results suggest that osimertinib and 35d disrupted the fatty acyl metabolism and induced mitochondrial stress in cancer cells. This study provides insights into the potential application of fatty acyl metabolism inhibitors, such as osimertinib or other TKIs, and mitochondrial stress inducers, such as curcumin derivatives, as combination therapy for cancer.
Assuntos
Curcumina , Neoplasias Pulmonares , Camundongos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Camundongos SCID , Neoplasias Pulmonares/metabolismo , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Mitocôndrias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , MutaçãoRESUMO
A series of genipin derivatives included tricyclic cyclopentaimidazopyridine, cyclopentapyridopyrimidine, octahydrocyclopentapyridodiazepine, and tetracyclic decahydrobenzoimidazocyclopentapyridine were synthesized and developed as anti-inflammatory agents. All of them were tested against NO production in LPS-induced RAW264.7 cells. Based on IC50 data and the SAR study, we found that tricyclic cyclopentaimidazopyridines 3d-f and 7-9 presented the better inhibitory activities (⦠28.1 µM) in comparison with the reference standard Indomethacin (166 µM). On the other hand, all of them showed inactivity for in vitro cyclooxygenase COX-2 inhibition assays and compounds 8 and 9 possessed the cell toxity. To explore the further anti-inflammatory mechanism, Western blot analysis was carried out. Furthermore, compound 3d shown better bioactivity than Indomethacin. The suppression of NF-κB signal pathway by compound 3d was also determined. To sum-up, compound 3d would be the potential anti-inflammatory lead compound.
Assuntos
Iridoides , Lipopolissacarídeos , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Indometacina , Iridoides/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7RESUMO
Natural phenolic products from herbal medicines and dietary plants constitute the main source of lead compounds for the development of the new drug. 4,4-Dimethylcurcumin (DMCU) is a synthetic curcumin derivative and exhibits anticancer activities against breast, colon, lung, and liver cancers. However, further development of DMCU is limited by unfavorable compound properties such as very low aqueous solubility and moderate stability. To increase its solubility, we installed either or both of the ethylene-carbonate-linked L-valine side chains to DMCU phenolic groups and produced targeted 1-trifluoroacetic acid (1-TFA) and 2-trifluoroacetic acid (2-TFA) derivatives. The terminus L-valine of ethylene-carbonate-linked side chain is known to be a L-type amino acid transporter 1 (LAT1) recognition element and therefore, these two derivatives were expected to readily enter into LAT1-expressing cancer cells. In practice, 1-TFA or 2-TFA were synthesized from DMCU in four steps with 34-48% overall yield. Based on the corresponding LC-MS analysis, water solubility of DMCU, 1-TFA, and 2-TFA at room temperature (25 ± 1 °C) were 0.018, 249.7, and 375.8 mg/mL, respectively, indicating >10,000-fold higher solubility of 1-TFA and 2-TFA than DMCU. Importantly, anti-proliferative assay demonstrated that 2-TFA is a potent anti-cancer agent against LAT1-expressing lung cancer cells NCI-H460, NCI-H358, and A549 cells due to its high intracellular uptake compared to DMCU and 1-TFA. In this study, we logically designed and synthesized the targeted compounds, established the LC-MS analytical methods for evaluations of drug solubility and intracellular uptake levels, and showed improved solubility and anti-cancer activities of 2-TFA. Our results provide a strategical direction for the future development of curcuminoid-like phenolic compounds.
Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Curcumina , Neoplasias/tratamento farmacológico , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Curcumina/análogos & derivados , Curcumina/síntese química , Curcumina/química , Curcumina/farmacologia , Humanos , Neoplasias/metabolismoRESUMO
Compound 1 is a curcumin di-O-2,2-bis(hydroxymethyl)propionate that shows significant in vitro and in vivo inhibitory activity against MDA-MB-231 cells with eight to ten-fold higher potency than curcumin. Here, we modified the α-position (C-4 position) of the central 1,3-diketone moiety of 1 with polar or nonpolar functional groups to afford a series of 4,4-disubstituted curcuminoid 2,2-bis(hydroxymethyl)propionate derivatives and evaluated their anticancer activities. A clear structure-activity relationship of compound 1 derivatives focusing on the functional groups at the C-4 position was established based on their anti-proliferative effects against the MDA-MB-231 and HCT-116 cell lines. Compounds 2-6 are 4,4-dimethylated, 4,4-diethylated, 4,4-dibenzylated, 4,4-dipropargylated and 4,4-diallylated compound 1, respectively. Compounds 2m-6m, the ester hydrolysis products of compounds 2-6, respectively, were synthesized and assessed for anticancer activity. Among all compound 1 derivatives, compound 2 emerged as a potential chemotherapeutic agent for colon cancer due to the promising in vivo anti-proliferative activities of 2 (IC50 = 3.10 ± 0.29 µM) and its ester hydrolysis product 2m (IC50 = 2.17 ± 0.16 µM) against HCT-116. The preliminary pharmacokinetic evaluation of 2 implied that 2 and 2m are main contributors to the in vivo efficacy. Compound 2 was further evaluated in an animal study using HCT-116 colon tumor xenograft bearing nude mice. The results revealed a dose-dependent efficacy that led to tumor volume reductions of 27%, 45%, and 60% at 50, 100, and 150 mg/kg doses, respectively. The established structure-activity relationship and pharmacokinetic outcomes of 2 is the guidance for future development of 4,4-disubstituted curcuminoid 2,2-bis(hydroxymethyl)- propionate derivatives as anticancer drug candidates.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Curcumina/química , Células HCT116 , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Camundongos , Camundongos Nus , Ratos Sprague-Dawley , Relação Estrutura-AtividadeRESUMO
The Min system of Escherichia coli mediates placement of the division septum at the midcell. It oscillates from pole to pole to establish a concentration gradient of the division inhibition that is high at the poles but low at the midcell; the cell middle thereby becomes the most favorable site for division. Although Min oscillation is well studied from molecular and biophysical perspectives, it is still an enigma as to whether such a continuous, energy-consuming, and organized movement of the Min proteins would affect cellular processes other than the division site selection. To tackle this question, we compared the inner membrane proteome of the wild-type and Δmin strains using a quantitative approach. Forty proteins that showed differential abundance on the inner membrane of the mutant cells were identified and defined as proteins of interest (POIs). More than half of the POIs were peripheral membrane proteins, suggesting that the Min system affects mainly reversible protein association with the inner membrane. In addition, 6 out of 10 selected POIs directly interacted with at least one of the Min proteins, confirming the correlation between POIs and the Min system.Further analysis revealed a functional relationship between metabolism and the Min system. Metabolic enzymes accounted for 45% of the POIs, and there was a change of metabolites in the related reactions. We hypothesize that the Min system could alter the membrane location of proteins to modulate their enzymatic activity. Thus, the metabolic modulation in the Δmin mutant is likely an adaptive phenotype in cells of abnormal size and chromosome number due to an imbalanced abundance of proteins on the inner membrane. Taken together, the current work reports novel interactions of the Min system and reveals a global physiological impact of the Min system in addition to the division site placement.
Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Proteômica/métodos , Divisão Celular , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Redes Reguladoras de Genes , Redes e Vias Metabólicas , Mutação , Mapas de Interação de ProteínasRESUMO
To elucidate the molecular mechanisms underlying the action of bioactive compounds such as metabolites, identification of their binding targets is essential. However, available techniques for enriching metabolite-binding proteins are practically restrained by special equipment requirements and laborious efforts. Here we have developed a novel method, affinity elution in tandem hydrophobic interaction chromatography (AETHIC), which enables enrichment of metabolite-binding proteins from a crude tissue extract. AETHIC constitutes two major steps, protein fractionation and affinity elution. The basic strategy of AETHIC uses a series of HIC matrices encompassing aliphatic chains of different length and thus provides a wide range of hydrophobicity for interactions with most proteins. Thereafter, target proteins are eluted selectively by a given ligand. As our first proof-of-principle, we demonstrated that AETHIC was able to enrich ATP-binding proteins from porcine brain extract. In addition, we have demonstrated that raf kinase inhibitory protein (RKIP) is an ATP-binding protein and ATP attenuates the interaction between RKIP and Raf-1. In parallel, short-term ATP depletion in cultured HEK293 cells augments interaction between RKIP and Raf-1, resulting in decreased activation of the downstream ERK signaling. Therefore, the ATP-binding function renders RKIP's inhibition on Raf-1 modulated by cellular ATP concentrations. These data shed light on how energy levels affect the propagation of cellular signaling. Taken together, the enclosed results advocate the potential of AETHIC in the study of metabolite-protein interactions.
Assuntos
Trifosfato de Adenosina/metabolismo , Cromatografia de Afinidade/métodos , Sistema de Sinalização das MAP Quinases , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Proteínas Proto-Oncogênicas c-raf/metabolismo , SuínosRESUMO
UNLABELLED: Iron is an essential nutrient for nearly all living organisms, including both hosts and invaders. Proteins such as ferritin regulate the iron levels in a cell, and in the event of a pathogenic invasion, the host can use an iron-withholding mechanism to restrict the availability of this essential nutrient to the invading pathogens. However, pathogens use various strategies to overcome this host defense. In this study, we demonstrated that white spot syndrome virus (WSSV) protein kinase 1 (PK1) interacted with shrimp ferritin in the yeast two-hybrid system. A pulldown assay and 27-MHz quartz crystal microbalance (QCM) analysis confirmed the interaction between PK1 and both ferritin and apoferritin. PK1 did not promote the release of iron ions from ferritin, but it prevented apoferritin from binding ferrous ions. When PK1 was overexpressed in Sf9 cells, the cellular labile iron pool (LIP) levels were elevated significantly. Immunoprecipitation and atomic absorption spectrophotometry (AAS) further showed that the number of iron ions bound by ferritin decreased significantly at 24 h post-WSSV infection. Taken together, these results suggest that PK1 prevents apoferritin from iron loading, and thus stabilizes the cellular LIP levels, and that WSSV uses this novel mechanism to counteract the host cell's iron-withholding defense mechanism. IMPORTANCE: We show here that white spot syndrome virus (WSSV) ensures the availability of iron by using a previously unreported mechanism to defeat the host cell's iron-withholding defense mechanism. This defense is often implemented by ferritin, which can bind up to 4,500 iron atoms and acts to sequester free iron within the cell. WSSV's novel counterstrategy is mediated by a direct protein-protein interaction between viral protein kinase 1 (PK1) and host ferritin. PK1 interacts with both ferritin and apoferritin, suppresses apoferritin's ability to sequester free iron ions, and maintains the intracellular labile iron pool (LIP), and thus the availability of free iron is increased within cells.
Assuntos
Ferritinas/metabolismo , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Proteínas Quinases/metabolismo , Proteínas Virais/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Linhagem Celular , Centrifugação , Mecanismos de Defesa , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas de Microbalança de Cristal de Quartzo , Técnicas do Sistema de Duplo-HíbridoRESUMO
In this study, we used a systems biology approach to investigate changes in the proteome and metabolome of shrimp hemocytes infected by the invertebrate virus WSSV (white spot syndrome virus) at the viral genome replication stage (12 hpi) and the late stage (24 hpi). At 12 hpi, but not at 24 hpi, there was significant up-regulation of the markers of several metabolic pathways associated with the vertebrate Warburg effect (or aerobic glycolysis), including glycolysis, the pentose phosphate pathway, nucleotide biosynthesis, glutaminolysis and amino acid biosynthesis. We show that the PI3K-Akt-mTOR pathway was of central importance in triggering this WSSV-induced Warburg effect. Although dsRNA silencing of the mTORC1 activator Rheb had only a relatively minor impact on WSSV replication, in vivo chemical inhibition of Akt, mTORC1 and mTORC2 suppressed the WSSV-induced Warburg effect and reduced both WSSV gene expression and viral genome replication. When the Warburg effect was suppressed by pretreatment with the mTOR inhibitor Torin 1, even the subsequent up-regulation of the TCA cycle was insufficient to satisfy the virus's requirements for energy and macromolecular precursors. The WSSV-induced Warburg effect therefore appears to be essential for successful viral replication.
Assuntos
Penaeidae/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Vírus da Síndrome da Mancha Branca 1/genética , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Animais , Ciclo do Ácido Cítrico/genética , Metabolismo Energético/genética , Glicólise/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Metaboloma/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Naftiridinas/farmacologia , Penaeidae/virologia , Via de Pentose Fosfato/genética , Proteoma/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Replicação Viral/genética , Vírus da Síndrome da Mancha Branca 1/metabolismoRESUMO
BACKGROUND: Penaeus monodon nudivirus (PmNV) is the causative agent of spherical baculovirosis in shrimp (Penaeus monodon). This disease causes significant mortalities at the larval stage and early postlarval (PL) stage and may suppress growth and reduce survival and production in aquaculture. The nomenclature and classification status of PmNV has been changed several times due to morphological observation and phylogenetic analysis of its partial genome sequence. In this study, we therefore completed the genome sequence and constructed phylogenetic trees to clarify PmNV's taxonomic position. To better understand the characteristics of the occlusion bodies formed by this marine occluded virus, we also compared the chemical properties of the polyhedrin produced by PmNV and the baculovirus AcMNPV (Autographa californica nucleopolyhedrovirus). RESULTS: We used next generation sequencing and traditional PCR methods to obtain the complete PmNV genome sequence of 119,638 bp encoding 115 putative ORFs. Phylogenetic tree analysis showed that several PmNV genes and sequences clustered with the non-occluded nudiviruses and not with the baculoviruses. We also investigated the characteristics of PmNV polyhedrin, which is a functionally important protein and the major component of the viral OBs (occlusion bodies). We found that both recombinant PmNV polyhedrin and wild-type PmNV OBs were sensitive to acid conditions, but unlike the baculoviral OBs, they were not susceptible to alkali treatment. CONCLUSIONS: From the viral genome features and phylogenetic analysis we conclude that PmNV is not a baculovirus, and that it should be assigned to the proposed Nudiviridae family with the other nudiviruses, but into a distinct new genus (Gammanudivirus).
Assuntos
Organismos Aquáticos/virologia , Baculoviridae/genética , Baculoviridae/fisiologia , Genômica , Penaeidae/virologia , Animais , Baculoviridae/classificação , Baculoviridae/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Boca/virologia , Fases de Leitura Aberta/genética , Filogenia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus/genéticaRESUMO
Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that causes severe liver damage, fibrosis, and scarring. Despite its potential to progress to cirrhosis or hepatic failure, approved drugs or treatments are currently unavailable. We developed 4,4-diallyl curcumin bis(2,2-hydroxymethyl)propanoate, also known as 35e, which induces upregulation of mitochondrial proteins including carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II, heat shock protein 60, and translocase of the outer mitochondrial membrane 20. Among these proteins, the upregulated expression of CPT-I was most prominent. CPT-I plays a crucial role in transporting carnitine across the mitochondrial inner membrane, thereby initiating mitochondrial ß-oxidation of fatty acids. Given recent research showing that CPT-I activation could be a viable pathway for NASH treatment, we hypothesized that 35e could serve as a potential agent for treating NASH. The efficacy of 35e in treating NASH was evaluated in methionine- and choline-deficient (MCD) diet- and Western diet (WD)-induced models that mimic human NASH. In the MCD diet-induced model, both short-term (2 weeks) and long-term (7 weeks) treatment with 35e effectively regulated elevated serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) concentrations and histological inflammation. However, the antisteatotic effect of 35e was obtained only in the short-term treatment group. As a comparative compound in the MCD diet-induced model, curcumin treatment did not produce significant regulatory effects on the liver triglyceride/total cholesterol, serum ALT/AST, or hepatic steatosis. In the WD-induced model, 35e ameliorated hepatic steatosis and hepatic inflammation, while increasing serum AST and hepatic lipid content. A decrease in epididymal adipose tissue weight and serum free fatty acid concentration suggested that 35e may promote lipid metabolism or impede lipid accumulation. Overall, 35e displayed significant antilipid accumulation and antifibrotic effects in the two complementary mice models. The development of new curcumin derivatives with the ability to induce CPT-I upregulation could further underscore their efficacy as anti-NASH agents.
Assuntos
Curcumina , Modelos Animais de Doenças , Metionina , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Metionina/deficiência , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Camundongos , Masculino , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Carnitina O-Palmitoiltransferase/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Propionatos/farmacologia , Propionatos/uso terapêutico , Propionatos/metabolismo , Humanos , Colina/metabolismo , Colina/farmacologiaRESUMO
Glial cells missing homolog 1 (GCM1) is a transcription factor essential for placental development. GCM1 promotes syncytiotrophoblast formation and placental vasculogenesis by activating fusogenic and proangiogenic gene expression in placenta. GCM1 activity is regulated by multiple post-translational modifications. The cAMP/PKA-signaling pathway promotes CBP-mediated GCM1 acetylation and stabilizes GCM1, whereas hypoxia-induced GSK-3ß-mediated phosphorylation of Ser322 causes GCM1 ubiquitination and degradation. How and whether complex modifications of GCM1 are coordinated is not known. Here we show that the interaction of GCM1 and dual-specificity phosphatase 23 (DUSP23) is enhanced by PKA-dependent phosphorylation of GCM1 on Ser269 and Ser275. The recruitment of DUSP23 reverses GSK-3ß-mediated Ser322 phosphorylation, which in turn promotes GCM1 acetylation, stabilization and activation. Supporting a central role in coordinating GCM1 modifications, knockdown of DUSP23 suppressed GCM1 target gene expression and placental cell fusion. Our study identifies DUSP23 as a novel factor that promotes placental cell fusion and reveals a complex regulation of GCM1 activity by coordinated phosphorylation, dephosphorylation and acetylation.
Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Fusão Celular , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA , Humanos , Proteínas Nucleares/química , Fosforilação , Serina/metabolismo , Fatores de Transcrição/química , Trofoblastos/citologia , Trofoblastos/enzimologia , UbiquitinaçãoRESUMO
[This corrects the article DOI: 10.3389/fphar.2022.907826.].
RESUMO
Background and aim: This study investigated the effect of the electrode configuration on EA treating ischemic stroke. Experimental procedure: An ischemic stroke rat model was established. In the EA-P group, the anodes of EA were placed on the BL7 and BL8 acupoints of the lesioned, and the cathodes were placed on the BL7 and BL8 acupoints of the nonlesioned hemispheres; by contrast, in the EA-N group. Results: The difference in neurological deficit scores between the first and fourth days and the difference in Rotarod test time between the fourth and first days after reperfusion were greater in the EA-P and EA-N groups than in the sham group (all p < 0.001). In the lesioned hemisphere, neuronal nuclei (NeuN), γ-aminobutyric acid-A (GABA)-A, postsynaptic density 95 (PSD95), and astrocyte glutamate transporter 1 (GLT-1) expression and microtubule-associated protein 2 (MAP2)/glyceraldehyde 3-phosphate dehydrogenase (GADPH) ratios were greater and the glial fibrillary acid protein (GFAP)/GADPH ratios were smaller in the EA-P than in the sham group (all p < 0.05), but these ratios in the EA-N group were similar to those in the sham group (all p > 0.05); serum adrenaline and serotonin levels in the sham group were lower than those in the normal and EA-P groups (both p < 0.05), and cerebrospinal fluid (CSF) glutamate levels were higher in the EA-P group than in the sham group (p < 0.05). Conclusion: EA improved neurological function through multiple pathways. However, placing the anode on the lesioned hemisphere can provide more neuroprotection.
RESUMO
This study investigated changes in neurotransmitters induced by the application of electroacupuncture (EA) at Zusanli (ST36) and Neiguan (PC6). A total of 30 rats were divided into five groups: sham, ST (EA at bilateral ST36 and ST37), ScT (ST plus previous neurectomy of the bilateral sciatic nerves), ScS (sham plus previous neurectomy of the bilateral sciatic nerve), and PC (EA at bilateral PC6 and PC7). The P2X2 receptor expression was stronger in the sham group than in the ST and PC groups (both p < 0.05) but similar between the sham and ScT groups (p > 0.05). Dopamine levels in the extracellular fluid surrounding the acupoints were higher in the PC group than in the sham and ST groups during the postacupuncture period (both p < 0.05). Glutamate levels in the extracellular fluid surrounding the acupoints were higher in the ST group than in the sham group during the acupuncture period (p < 0.05) and higher in the ST group than in the sham and PC groups during the postacupuncture period (both p < 0.05). Serum adrenaline and noradrenaline levels were higher in the PC group than in the sham, ST, and ScT groups (all p < 0.05). Glutamate levels in the CSF were higher in the ST group than in the sham, ScS, and PC groups (all p < 0.05). GABA levels in the CSF were higher in the ST group than in the sham, ScT, and PC groups (all p < 0.05). EA at ST36 and ST37 and PC6 and PC7 exerted an analgesic effect, EA at PC6 and PC7 can enhance heart function, and EA at ST36 and ST37 modulates the cerebral cortex. However, the study needs an evaluation of direct pain behavior, heart function, and brain function in the future.
RESUMO
Most breast cancers are estrogen receptor (ER)-positive, targeted by endocrine therapies, but chemoresistance remains a significant challenge in treating the disease. Altered intracellular metabolite has closely connected with the pathogenic process of breast cancer and drug resistance. Itaconate is an anti-inflammatory metabolite generated from converting cis-aconitate in the tricarboxylic acid (TCA) cycle by the immune response gene 1 (IRG1). However, the potential role of IRG1/Itaconate in the crosstalk of metabolic pathways and tumor development is currently unknown. We tested the hypothesis that IRG1/Itaconate controls metabolic homeostasis to modulate breast cancer cell growth. We showed that breast cancers harboring an IRG1 deletion displayed a worse prognosis than those without IRG1 deletion; approximately 70% of breast cancer with IRG1 deletion were ER-positive. There was no significant difference in the IRG1 copy number, mRNA, and protein levels between ER-positive and ER-negative breast cancer cell lines and breast tumors. Itaconate selectively inhibited ER-positive breast cancer cell growth via the blockade of DNA synthesis and the induction of apoptosis. Mechanistically, IRG1 overexpression led to decreased intermediate levels of glycolysis, the TCA cycle, and lipid metabolism to compromise the entire biomass and energy of the cell. Itaconate inhibited the enzymatic activity of succinate dehydrogenase (SDH) in the mitochondrial electron-transport chain, concomitant with reactive oxygen species (ROS) production and the decreased adenylate kinase (AK) activities, which, in turn, induced AMP-activated protein kinase (AMPK) activation to restore metabolic homeostasis. These results suggest a new regulatory pathway whereby IRG1/Itaconate controls metabolic homeostasis in ER-positive breast cancer cells, which may contribute to developing more efficacious therapeutic strategies for breast cancer.
RESUMO
BACKGROUND: Human endothelial progenitor cells (hEPCs), originating from hemangioblasts in bone marrow (BM), migrate into the blood circulation, differentiate into endothelial cells, and could act as an alternative tool for tissue regeneration. In addition, trimethylamine-N-oxide (TMAO), one of the gut microbiota metabolites, has been identified as an atherosclerosis risk factor. However, the deleterious effects of TMAO on the neovascularization of hEPCs have not been studied yet. RESULTS: Our results demonstrated that TMAO dose-dependently impaired human stem cell factor (SCF)-mediated neovascularization in hEPCs. The action of TMAO was through the inactivation of Akt/endothelial nitric oxide synthase (eNOS), MAPK/ERK signaling pathways, and an upregulation of microRNA (miR)-221. Docosahexaenoic acid (DHA) could effectively inhibit the cellular miR-221 level and induce the phosphorylation level of Akt/eNOS, MAPK/ERK signaling molecules, and neovascularization in hEPCs. DHA enhanced cellular amounts of reduced form glutathione (GSH) through an increased expression of the gamma-glutamylcysteine synthetase (γ-GCS) protein. CONCLUSIONS: TMAO could significantly inhibit SCF-mediated neovascularization, in part in association with an upregulation of miR-221 level, inactivation of Akt/eNOS and MAPK/ERK cascades, suppression of γ-GCS protein, and decreased levels of GSH and GSH/GSSG ratio. Furthermore, the DHA could alleviate the detrimental effects of TMAO and induce neovasculogenesis through suppression of miR-221 level, activation of Akt/eNOS and MAPK/ERK signaling cascades, increased expression of γ-GCS protein, and increment of cellular GSH level and GSH/GSSG ratio in hEPCs.