Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110602

RESUMO

Genetically modified plants and crops can contribute to remarkable increase in global food supply, with improved yield and resistance to plant diseases or insect pests. The development of biotechnology introducing exogenous nucleic acids in transgenic plants is important for plant health management. Different genetic engineering methods for DNA delivery, such as biolistic methods, Agrobacterium tumefaciens-mediated transformation, and other physicochemical methods have been developed to improve translocation across the plasma membrane and cell wall in plants. Recently, the peptide-based gene delivery system, mediated by cell-penetrating peptides (CPPs), has been regarded as a promising non-viral tool for efficient and stable gene transfection into both animal and plant cells. CPPs are short peptides with diverse sequences and functionalities, capable of agitating plasma membrane and entering cells. Here, we highlight recent research and ideas on diverse types of CPPs, which have been applied in DNA delivery in plants. Various basic, amphipathic, cyclic, and branched CPPs were designed, and modifications of functional groups were performed to enhance DNA interaction and stabilization in transgenesis. CPPs were able to carry cargoes in either a covalent or noncovalent manner and to internalize CPP/cargo complexes into cells by either direct membrane translocation or endocytosis. Importantly, subcellular targets of CPP-mediated nucleic acid delivery were reviewed. CPPs offer transfection strategies and influence transgene expression at subcellular localizations, such as in plastids, mitochondria, and the nucleus. In summary, the technology of CPP-mediated gene delivery provides a potent and useful tool to genetically modified plants and crops of the future.


Assuntos
Peptídeos Penetradores de Células , Ácidos Nucleicos , Animais , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Peptídeos Penetradores de Células/química , Transfecção , Técnicas de Transferência de Genes , DNA , Ácidos Nucleicos/metabolismo
2.
Plant J ; 105(4): 1123-1133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33220116

RESUMO

Imaging mass spectrometry (IMS) is a powerful technique that enables analysis of various molecular species at a high spatial resolution with low detection limits. In contrast to the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) approach, surface-assisted laser desorption/ionization (SALDI) can be more effective in the detection of small molecules due to the absence of interfering background signals in low m/z ranges. We developed a functionalized TiO2 nanowire as a solid substrate for IMS of low-molecular-weight species in plant tissues. We prepared TiO2 nanowires using an inexpensive modified hydrothermal process and subsequently functionalized them chemically with various silane analogs to overcome the problem of superhydrophilicity of the substrate. Chemical modification changed the selectivity of imprinting of samples deposited on the substrate surface and thus improved the detection limits. The substrate was applied to image distribution of the metabolites in very fragile specimens such as the petal of Catharanthus roseus. We observed that the metabolites are distributed heterogeneously in the petal, which is consistent with previous results reported for the C. roseus plant leaf and stem. The intermediates corresponding to the biosynthesis pathway of some vinca alkaloids were clearly shown in the petal. We also performed profiling of petals from five different cultivars of C. roseus plant. We verified the semi-quantitative capabilities of the imprinting/imaging approach by comparing results using the LC-MS analysis of the plant extracts. This suggested that the functionalized TiO2 nanowire substrate-based SALDI is a powerful technique complementary to MALDI-MS.


Assuntos
Catharanthus/metabolismo , Flores/metabolismo , Nanofios , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Titânio , Alcaloides de Vinca/metabolismo , Metabolismo Secundário , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
3.
Mar Drugs ; 19(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918939

RESUMO

Empedopeptins-eight amino acid cyclic lipopeptides-are calcium-dependent antibiotics that act against Gram-positive bacteria such as Staphylococcus aureus by inhibiting cell wall biosynthesis. However, to date, the biosynthetic mechanism of the empedopeptins has not been well identified. Through comparative genomics and metabolomics analysis, we identified empedopeptin and its new analogs from a marine bacterium, Massilia sp. YMA4. We then unveiled the empedopeptin biosynthetic gene cluster. The core nonribosomal peptide gene null-mutant strains (ΔempC, ΔempD, and ΔempE) could not produce empedopeptin, while dioxygenase gene null-mutant strains (ΔempA and ΔempB) produced several unique empedopeptin analogs. However, the antibiotic activity of ΔempA and ΔempB was significantly reduced compared with the wild-type, demonstrating that the hydroxylated amino acid residues of empedopeptin and its analogs are important to their antibiotic activity. Furthermore, we found seven bacterial strains that could produce empedopeptin-like cyclic lipopeptides using a genome mining approach. In summary, this study demonstrated that an integrated omics strategy can facilitate the discovery of potential bioactive metabolites from microbial sources without further isolation and purification.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/biossíntese , Genômica , Lipopeptídeos/biossíntese , Metabolômica , Oxalobacteraceae/metabolismo , Peptídeos Cíclicos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Biologia Computacional , Mineração de Dados , Regulação Bacteriana da Expressão Gênica , Lipopeptídeos/genética , Lipopeptídeos/farmacologia , Estrutura Molecular , Família Multigênica , Oligopeptídeos/biossíntese , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Oxalobacteraceae/genética , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/farmacologia , Biossíntese de Proteínas , Proteômica , Metabolismo Secundário , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138333

RESUMO

The application of nanoparticles (NPs) in industry is on the rise, along with the potential for human exposure. While the toxicity of microscale equivalents has been studied, nanoscale materials exhibit different properties and bodily uptake, which limits the prediction ability of microscale models. Here, we examine the cytotoxicity of seven transition metal oxide NPs in the fourth period of the periodic table of the chemical elements. We hypothesized that NP-mediated cytotoxicity is a function of cell killing and suppression of cell proliferation. To test our hypothesis, transition metal oxide NPs were tested in a human lung cancer cell model (A549). Cells were exposed to a series of concentrations of TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, or ZnO for either 24 or 48 h. All NPs aside from Cr2O3 and Fe2O3 showed a time- and dose-dependent decrease in viability. All NPs significantly inhibited cellular proliferation. The trend of cytotoxicity was in parallel with that of proliferative inhibition. Toxicity was ranked according to severity of cellular responses, revealing a strong correlation between viability, proliferation, and apoptosis. Cell cycle alteration was observed in the most toxic NPs, which may have contributed to promoting apoptosis and suppressing cell division rate. Collectively, our data support the hypothesis that cell killing and cell proliferative inhibition are essential independent variables in NP-mediated cytotoxicity.


Assuntos
Proliferação de Células/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Óxidos/química , Células A549 , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Óxido de Zinco/química
5.
Int J Mol Sci ; 21(7)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231169

RESUMO

The use of nanomaterial-based products continues to grow with advancing technology. Understanding the potential toxicity of nanoparticles (NPs) is important to ensure that products containing them do not impose harmful effects to human or environmental health. In this study, we evaluated the comparative cytotoxicity between nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) in human bronchoalveolar carcinoma (A549) and human hepatocellular carcinoma (HepG2) cell lines. Cellular viability studies revealed cell line-specific cytotoxicity in which nickel NPs were toxic to A549 cells but relatively nontoxic to HepG2 cells. Time-, concentration-, and particle-specific cytotoxicity was observed in A549 cells. NP-induced oxidative stress triggered dissipation of mitochondrial membrane potential and induction of caspase-3 enzyme activity. The subsequent apoptotic events led to reduction in cell number. In addition to cell death, suppression of cell proliferation played an essential role in regulating cell number. Collectively, the observed cell viability is a function of cell death and suppression of proliferation. Physical and chemical properties of NPs such as total surface area and metal dissolution are in agreement with the observed differential cytotoxicity. Understanding the properties of NPs is essential in informing the design of safer materials.


Assuntos
Morte Celular/efeitos dos fármacos , Hidróxidos/toxicidade , Nanopartículas/toxicidade , Níquel/toxicidade , Células A549 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Estresse Oxidativo/efeitos dos fármacos
6.
J Nanosci Nanotechnol ; 19(2): 613-621, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360131

RESUMO

Cell-penetrating peptides (CPPs) containing a preponderance of basic amino acids are able to deliver biologically active macromolecules and nanomaterials into live cells. Quantum dots (QDs) are nanoparticles with unique fluorescence properties that have found wide application in biomedical imaging. In this study, we demonstrate transduction of an L6 CPP (RRWQWR) derived from bovine lactoferricin (LFcin) into human lung cancer cells. L6 noncovalently interacts with QDs to form stable complexes. L6/QD complexes enter cells most efficiently when prepared at a nitrogen/phosphate ratio of 60. Mechanistic studies indicate that L6/QD complexes enter cells by endocytosis. Treatment with 1,2-benzisothiazol-3(2H)-one (BIT), an industrial preservative that enhances uptake of certain CPPs, does not affect L6 CPP-mediated protein transduction efficiency. L6 and L6/QD complexes are not cytotoxic. These results indicate that L6 LFcin might be an efficient and safe nanoshuttle for nanoparticles or nanomedicines in biomedical applications.


Assuntos
Peptídeos Penetradores de Células , Nanopartículas , Pontos Quânticos , Animais , Bovinos , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Endocitose , Humanos , Lactoferrina , Nanopartículas/toxicidade
7.
Int J Mol Sci ; 18(12)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236059

RESUMO

Nanotechnology is an emerging discipline that studies matters at the nanoscale level. Eventually, the goal is to manipulate matters at the atomic level to serve mankind. One growing area in nanotechnology is biomedical applications, which involve disease management and the discovery of basic biological principles. In this review, we discuss characteristics of nanomaterials, with an emphasis on transition metal oxide nanoparticles that influence cytotoxicity. Identification of those properties may lead to the design of more efficient and safer nanosized products for various industrial purposes and provide guidance for assessment of human and environmental health risk. We then investigate biochemical and molecular mechanisms of cytotoxicity that include oxidative stress-induced cellular events and alteration of the pathways pertaining to intracellular calcium homeostasis. All the stresses lead to cell injuries and death. Furthermore, as exposure to nanoparticles results in deregulation of the cell cycle (i.e., interfering with cell proliferation), the change in cell number is a function of cell killing and the suppression of cell proliferation. Collectively, the review article provides insights into the complexity of nanotoxicology.


Assuntos
Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo
8.
J Membr Biol ; 248(2): 355-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655108

RESUMO

Bacterial and archaeal cell envelopes are complex multilayered barriers that serve to protect these microorganisms from their extremely harsh and often hostile environments. Import of exogenous proteins and nanoparticles into cells is important for biotechnological applications in prokaryotes. In this report, we demonstrate that cell-penetrating peptides (CPPs), both bacteria-expressed nona-arginine peptide (R9) and synthetic R9 (SR9), are able to deliver noncovalently associated proteins or quantum dots into four representative species of prokaryotes: cyanobacteria (Synechocystis sp. PCC 6803), bacteria (Escherichia coli DH5α and Arthrobacter ilicis D-50), and archaea (Thermus aquaticus). Although energy-dependent endocytosis is generally accepted as a hallmark that distinguishes eukaryotes from prokaryotes, cellular uptake of uncomplexed green fluorescent protein (GFP) by cyanobacteria was mediated by classical endocytosis. Mechanistic studies revealed that macropinocytosis plays a critical and major role in CPP-mediated protein transduction in all four prokaryotes. Membrane damage was not observed when cyanobacterial cells were treated with R9/GFP complexes, nor was cytotoxicity detected when bacteria or archaea were treated with SR9/QD complexes in the presence of macropinocytic inhibitors. These results indicate that the uptake of protein is not due to a compromise of membrane integrity in cyanobacteria, and that CPP can be an effective and safe carrier for membrane trafficking in prokaryotic cells. Our investigation provides important new insights into the transport of exogenous proteins and nanoparticles across the complex membrane systems of prokaryotes.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Endocitose , Células Procarióticas/fisiologia , Archaea/metabolismo , Bactérias/metabolismo , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/toxicidade , Microscopia de Fluorescência , Permeabilidade , Transporte Proteico
9.
J Nanosci Nanotechnol ; 15(3): 2067-78, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26413622

RESUMO

Nanoparticles, such as semiconductor quantum dots (QDs), have been found increasing use in biomedical diagnosis and therapeutics because of their unique properties, including quantum confinement, surface plasmon resonance, and superparamagnetism. Cell-penetrating peptides (CPPs) represent an efficient mechanism to overcome plasma membrane barriers and deliver biologically active molecules into cells. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9, and PR9) can noncovalently complex with red light emitting QDs, dramatically increasing their deliv- ery into living cells. Zeta-potential and size analyses highlight the importance of electrostatic interactions between positive-charged CPP/QD complexes and negative-charged plasma membranes indicating the efficiency of transmembrane complex transport. Subcellular colocalization indicates associations of QD with early endosomes and lysosomes following PR9-mediated delivery. Our study demonstrates that nontoxic CPPs of varied composition provide an effective vehicle for the design of optimized drug delivery systems.


Assuntos
Arginina , Peptídeos Penetradores de Células/química , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Cor , Humanos , Espaço Intracelular/metabolismo
10.
J Appl Toxicol ; 35(3): 273-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25092119

RESUMO

Hair cells are highly sensitive to environmental insults and other therapeutic drugs. The adverse effects of drugs such as aminoglycosides can cause hair cell death and lead to hearing loss and imbalance. The objective of the present study was to evaluate the protective activity of L-ascorbic acid, N-acetylcysteine (NAC) and apocynin on neomycin-induced hair cell damage in zebrafish (Danio rerio) larvae at 5 days post fertilization (dpf). Results showed that the loss of hair cells within the neuromasts of the lateral lines after neomycin exposure was evidenced by a significantly lower number of neuromasts labeled with fluorescent dye FM1-43FX observed under a microscope. Co-administration with L-ascorbic acid, NAC and apocynin protected neomycin-induced hair cell loss within the neuromasts. Moreover, these three compounds reduced the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin, indicating that their antioxidant action is involved. In contrast, the neuromasts were labeled with specific fluorescent dye Texas-red conjugated with neomycin to detect neomycin uptake. Interestingly, the uptake of neomycin into hair cells was not influenced by these three antioxidant compounds. These data imply that prevention of hair cell damage against neomycin by L-ascorbic acid, NAC and apocynin might be associated with inhibition of excessive ROS production, but not related to modulating neomycin uptake. Our findings conclude that L-ascorbic acid, NAC and apocynin could be used as therapeutic drugs to protect aminoglycoside-induced listening impairment after further confirmatory studies.


Assuntos
Antibacterianos/toxicidade , Antioxidantes/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Neomicina/toxicidade , Peixe-Zebra , Acetofenonas/farmacologia , Acetilcisteína/farmacologia , Alternativas ao Uso de Animais , Animais , Ácido Ascórbico/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Mecanorreceptores/efeitos dos fármacos , Mecanorreceptores/metabolismo , Mecanorreceptores/patologia , Microscopia Confocal , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/embriologia
11.
J Chem Ecol ; 40(4): 379-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24687178

RESUMO

(R)-Solanone was identified as a female-specific compound from aerations of virgin females of the scale insect, Aulacaspis murrayae Takahashi. The stereochemistry of the insect-produced solanone was confirmed to be (R) by comparison with synthesized racemic and chiral standards on a chiral stationary phase GC column. In bioassays, males were strongly attracted to a synthesized sample of (R)-solanone, demonstrating that this compound is a sex pheromone component for this species.


Assuntos
Hemípteros/química , Cetonas/análise , Atrativos Sexuais/química , Comportamento Sexual Animal , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Hemípteros/fisiologia , Controle de Insetos , Cetonas/química , Cetonas/metabolismo , Masculino , Atrativos Sexuais/metabolismo , Estereoisomerismo , Taiwan
12.
BMC Microbiol ; 13: 57, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23497160

RESUMO

BACKGROUND: The plasma membrane plays an essential role in selective permeability, compartmentalization, osmotic balance, and cellular uptake. The characteristics and functions of cyanobacterial membranes have been extensively investigated in recent years. Cell-penetrating peptides (CPPs) are special nanocarriers that can overcome the plasma membrane barrier and enter cells directly, either alone or with associated cargoes. However, the cellular entry mechanisms of CPPs in cyanobacteria have not been studied. RESULTS: In the present study, we determine CPP-mediated transduction efficiency and internalization mechanisms in cyanobacteria using a combination of biological and biophysical methods. We demonstrate that both Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 strains of cyanobacteria possess red autofluorescence. Green fluorescent protein (GFP), either alone or noncovalently associated with a CPP comprised of nine arginine residues (R9/GFP complexes), entered cyanobacteria. The ATP-depleting inhibitor of classical endocytosis, N-ethylmaleimide (NEM), could block the spontaneous internalization of GFP, but not the transduction of R9/GFP complexes. Three specific inhibitors of macropinocytosis, cytochalasin D (CytD), 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), and wortmannin, reduced the efficiency of R9/GFP complex transduction, indicating that entry of R9/GFP complexes involves macropinocytosis. Both the 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) and membrane leakage analyses confirmed that R9/GFP complexes were not toxic to the cyanobacteria, nor were the endocytic and macropinocytic inhibitors used in these studies. CONCLUSIONS: In summary, we have demonstrated that cyanobacteria use classical endocytosis and macropinocytosis to internalize exogenous GFP and CPP/GFP proteins, respectively. Moreover, the CPP-mediated delivery system is not toxic to cyanobacteria, and can be used to investigate biological processes at the cellular level in this species. These results suggest that both endocytic and macropinocytic pathways can be used for efficient internalization of regular protein and CPP-mediated protein delivery in cyanobacteria, respectively.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Synechococcus/metabolismo , Synechocystis/metabolismo , Endocitose , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Synechococcus/fisiologia , Synechocystis/fisiologia
13.
Pest Manag Sci ; 79(10): 3934-3949, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37248198

RESUMO

BACKGROUND: Pyrethroids are among the most applied adulticides worldwide to control mosquito vectors for prevention of arboviral diseases transmission. However, pesticide resistance development in a mosquito population could lead to decreased control efficacy. While most studies investigate the resistant genotype (i.e. kdr, CYP450, etc.) as explanatory variables, few field efficacy studies have measured pesticide quantities deposited at different distances from the sprayer in association with observed mosquito mortality. The current study determined field delivered amounts of an applied ULV permethrin/PBO formulation (31% permethrin + 66% piperonyl butoxide) by GC/MS and estimated practical resistance ratios using caged mosquito females. RESULTS: For field samples, the extraction method recovered 78 ± 3.92-108 ± 8.97% of the permethrin/PBO formulation when utilizing the peaks of PBO from GC/MS to estimate the concentrations of adulticide deposited near the mosquito cages. The field bioassay showed that the spatial distribution of permethrin/PBO formulation was heterogeneous among three pseudo-replicates within the same distance. Within the quantifiable permethrin/PBO range of 15.7-51.4 ng/cm2 , field-collected mosquito mortalities started at 64% and linearly increased reaching 100% only in two areas, while all Sebring susceptible mosquitoes died. The field LC95 resistance ratio (RR) of F0 Cx. quinquefasciatus ranged from 2.65-3.51, falling within the 95% CI of RR95 estimated by laboratory vial assays. Tests with and without PBO indicated P450's enzymes contributed to field resistance. CONCLUSION: Results showed the suitability of the collection and quantification method to estimate the field resistance ratio at the applied pesticide rate. Pesticide quantification would also allow the association of the known frequencies of resistance mechanisms (e.g. kdr, CYP450) with field mortalities to estimate the resistance level conferred by such mechanisms. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Culex , Culicidae , Inseticidas , Praguicidas , Piretrinas , Animais , Feminino , Permetrina/farmacologia , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Controle de Mosquitos/métodos , Bioensaio
14.
Membranes (Basel) ; 13(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837754

RESUMO

We investigated the antimicrobial activity and membrane disruption modes of the antimicrobial peptide mastoparan-AF against hemolytic Escherichia coli O157:H7. Based on the physicochemical properties, mastoparan-AF may potentially adopt a 3-11 amphipathic helix-type structure, with five to seven nonpolar or hydrophobic amino acid residues forming the hydrophobic face. E. coli O157:H7 and two diarrheagenic E. coli veterinary clinical isolates, which are highly resistant to multiple antibiotics, are sensitive to mastoparan-AF, with minimum inhibitory and bactericidal concentrations (MIC and MBC) ranging from 16 to 32 µg mL-1 for E. coli O157:H7 and four to eight µg mL-1 for the latter two isolates. Mastoparan-AF treatment, which correlates proportionally with membrane permeabilization of the bacteria, may lead to abnormal dents, large perforations or full opening at apical ends (hollow tubes), vesicle budding, and membrane corrugation and invagination forming irregular pits or pores on E. coli O157:H7 surface. In addition, mRNAs of prepromastoparan-AF and prepromastoparan-B share a 5'-poly(A) leader sequence at the 5'-UTR known for the advantage in cap-independent translation. This is the first report about the 3-11 amphipathic helix structure of mastoparans to facilitate membrane interaction. Mastoparan-AF could potentially be employed to combat multiple antibiotic-resistant hemolytic E. coli O157:H7 and other pathogenic E. coli.

15.
Membranes (Basel) ; 12(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35054614

RESUMO

Recently, membrane-active peptides or proteins that include antimicrobial peptides (AMPs), cytolytic proteins, and cell-penetrating peptides (CPPs) have attracted attention due to their potential applications in the biomedical field. Among them, CPPs have been regarded as a potent drug/molecules delivery system. Various cargoes, such as DNAs, RNAs, bioactive proteins/peptides, nanoparticles and drugs, can be carried by CPPs and delivered into cells in either covalent or noncovalent manners. Here, we focused on four arginine-rich CPPs and reviewed the mechanisms that these CPPs used for intracellular uptake across cellular plasma membranes. The varying transduction efficiencies of them alone or with cargoes were discussed, and the membrane permeability was also expounded for CPP/cargoes delivery in various species. Direct membrane translocation (penetration) and endocytosis are two principal mechanisms for arginine-rich CPPs mediated cargo delivery. Furthermore, the amino acid sequence is the primary key factor that determines the cellular internalization mechanism. Importantly, the non-cytotoxic nature and the wide applicability make CPPs a trending tool for cellular delivery.

16.
Commun Biol ; 5(1): 454, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551233

RESUMO

Bacterial polyynes are highly active natural products with a broad spectrum of antimicrobial activities. However, their detailed mechanism of action remains unclear. By integrating comparative genomics, transcriptomics, functional genetics, and metabolomics analysis, we identified a unique polyyne resistance gene, masL (encoding acetyl-CoA acetyltransferase), in the biosynthesis gene cluster of antifungal polyynes (massilin A 1, massilin B 2, collimonin C 3, and collimonin D 4) of Massilia sp. YMA4. Crystallographic analysis indicated that bacterial polyynes serve as covalent inhibitors of acetyl-CoA acetyltransferase. Moreover, we confirmed that the bacterial polyynes disrupted cell membrane integrity and inhibited the cell viability of Candida albicans by targeting ERG10, the homolog of MasL. Thus, this study demonstrated that acetyl-CoA acetyltransferase is a potential target for developing antifungal agents.


Assuntos
Acetil-CoA C-Acetiltransferase , Antifúngicos , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Antifúngicos/farmacologia , Bactérias/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Poli-Inos/metabolismo , Poli-Inos/farmacologia
17.
Curr Gene Ther ; 21(2): 89-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33292120

RESUMO

There are more than 3,500 genes that are being linked to hereditary diseases or correlated with an elevated risk of certain illnesses. As an alternative to conventional treatments with small molecule drugs, gene therapy has arisen as an effective treatment with the potential to not just alleviate disease conditions but also cure them completely. In order for these treatment regimens to work, genes or editing tools intended to correct diseased genetic material must be efficiently delivered to target sites. There have been many techniques developed to achieve such a goal. In this article, we systematically review a variety of gene delivery and therapy methods that include physical methods, chemical and biochemical methods, viral methods, and genome editing. We discuss their historical discovery, mechanisms, advantages, limitations, safety, and perspectives.


Assuntos
Edição de Genes , Técnicas de Transferência de Genes , Doenças Genéticas Inatas/terapia , Terapia Genética/tendências , Sistemas CRISPR-Cas/genética , Doenças Genéticas Inatas/genética , Humanos
18.
Methods Mol Biol ; 2211: 113-121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33336274

RESUMO

Cell-penetrating peptides (CPPs) are small peptides which help intracellular delivery of functional macromolecules, including DNAs, RNAs, and proteins, across the cell membrane and into the cytosol, and even into the nucleus in some cases. Delivery of macromolecules can facilitate transfection, aid in gene therapy and transgenesis, and alter gene expression. L5a (RRWQW), originally derived from bovine lactoferricin, is one kind of CPPs which can promote cellular uptake of plasmid DNA and enters cells via direct membrane translocation. The peptide complexes noncovalently with DNA over a short incubation period. DNA plasmid and L5a complex stability is confirmed by a decrease in mobility in a gel retardation assay, and successful transfection is proven by the detection of a reporter gene in cells using fluorescent microscopy. Here, we describe methods to study noncovalent interactions between L5a and plasmid DNA, and the delivery of L5a/DNA complexes into cells. L5a is the one of the smallest CPPs discovered to date, providing a small delivery vehicle for macromolecules in mammalian cells. A small vehicle which can enter the nucleus is ideal for efficient gene uptake, transfer, and therapy. It is simple to complex with DNA plasmids, and its nature allows mammalian cells to be easily transfected.


Assuntos
Peptídeos Penetradores de Células/química , DNA/administração & dosagem , Técnicas de Transferência de Genes , Lactoferrina/química , Substâncias Macromoleculares/química , Animais , DNA/química , DNA/genética , Imunofluorescência , Expressão Gênica , Genes Reporter , Humanos , Microscopia de Fluorescência , Transfecção
19.
J Biomed Biotechnol ; 2010: 948543, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21048930

RESUMO

Semiconductor quantum dots (QDs) have recently been used to deliver and monitor biomolecules, such as drugs and proteins. However, QDs alone have a low efficiency of transport across the plasma membrane. In order to increase the efficiency, we used synthetic nona-arginine (SR9), a cell-penetrating peptide, to facilitate uptake. We found that SR9 increased the cellular uptake of QDs in a noncovalent binding manner between QDs and SR9. Further, we investigated mechanisms of QD/SR9 cellular internalization. Low temperature and metabolic inhibitors markedly inhibited the uptake of QD/SR9, indicating that internalization is an energy-dependent process. Results from both the pathway inhibitors and the RNA interference (RNAi) technique suggest that cellular uptake of QD/SR9 is predominantly a lipid raft-dependent process mediated by macropinocytosis. However, involvement of clathrin and caveolin-1 proteins in transducing QD/SR9 across the membrane cannot be completely ruled out.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Oligopeptídeos/administração & dosagem , Pontos Quânticos , Transporte Biológico , Western Blotting , Compostos de Cádmio/administração & dosagem , Compostos de Cádmio/farmacocinética , Caveolinas/antagonistas & inibidores , Caveolinas/genética , Caveolinas/metabolismo , Linhagem Celular Tumoral , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Humanos , Microscopia de Fluorescência , Oligopeptídeos/farmacocinética , Pinocitose , RNA Interferente Pequeno/genética , Compostos de Selênio/administração & dosagem , Compostos de Selênio/farmacocinética , Sulfetos/administração & dosagem , Sulfetos/farmacocinética , Compostos de Zinco/administração & dosagem , Compostos de Zinco/farmacocinética
20.
J Nanosci Nanotechnol ; 10(12): 7897-905, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21121277

RESUMO

Quantum dots (QDs) are luminescent semiconductor nanocrystals that are widely used as fluorescent probes in biomedical applications, including cellular imaging and tumor tracking. Cell-penetrating peptides (CPPs), also called protein transduction domains (PTDs), are short basic peptides that permeate cell membranes and are able to deliver a variety of macromolecule cargoes, such as DNAs, RNAs, proteins, and nanomaterials. Here we review strategies to couple QDs to CPPs, by either covalent linkages or noncovalent interactions, to provide a tool to study intracellular delivery. This facilitated transport of QDs by CPPs into cells is both simple and efficient. Accordingly, CPP-QD nanoparticles are likely to be of broad utility in biological research and advance the development of medical and pharmaceutical therapeutics.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Pontos Quânticos , Nanocompostos/química , Pinocitose , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA