Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Bioorg Med Chem Lett ; 74: 128920, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35931244

RESUMO

mPGES-1 is found to be up-regulated in the dopaminergic neurons of the substantia nigra pars compacta (SNpc) of postmortem brain tissue from Parkinson's disease (PD) patients and neurotoxin 6-hydroxydopamine (6-OHDA)-induced PD mice. Since the genetic deletion of mPGES-1 abolished 6-OHDA-induced PGE2 production and 6-OHDA-induced dopaminergic neurodegeneration in vitro and in vivo models, mPGES-1 enzyme has the potential to be an important target for PD therapy. In the present work, we investigated whether a small organic molecule as mPGES-1 inhibitor could exhibit the neuroprotective effects against 6-OHDA-induced neurotoxicity in in vitro and in vivo models. For this research goal, a new series of arylsulfonyl hydrazide derivatives was prepared and investigated whether these compounds may protect neurons against 6-OHDA-induced neurotoxicity in both in vitro and in vivo studies. Among them, compound 7s (MPO-0144) as a mPGES-1 inhibitor (PGE2 IC50 = 41.77 nM; mPGES-1 IC50 = 1.16 nM) exhibited a potent neuroprotection (ED50 = 3.0 nM) against 6-OHDA-induced in PC12 cells without its own neurotoxicity (IC50 = >10 µM). In a 6-OHDA-induced mouse model of PD, administration of compound 7s (1 mg/kg/day, for 7 days, i.p.) ameliorated motor impairments and dopaminergic neuronal damage. These significant biological effects of compound 7s provided the first pharmacological evidence that mPGES-1 inhibitor could be a promising therapeutic agent for PD patients.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Prostaglandinas E/farmacologia , Prostaglandinas E/uso terapêutico , Ratos
2.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670458

RESUMO

Interferons (IFNs) are a crucial component in the innate immune response. Especially the IFN-ß signaling operates in most cell types and plays a key role in the first line of defense upon pathogen intrusion. The induction of IFN-ß should be tightly controlled, because its hyperactivation can lead to tissue damage or autoimmune diseases. Activation of the IFN-ß promoter needs Interferon Regulatory Factor 3 (IRF3), together with Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Activator Protein 1 (AP-1). Here we report that a human noncoding RNA, nc886, is a novel suppressor for the IFN-ß signaling and inflammation. Upon treatment with several pathogen-associated molecular patterns and viruses, nc886 suppresses the activation of IRF3 and also inhibits NF-κB and AP-1 via inhibiting Protein Kinase R (PKR). These events lead to decreased expression of IFN-ß and resultantly IFN-stimulated genes. nc886's role might be to restrict the IFN-ß signaling from hyperactivation. Since nc886 expression is regulated by epigenetic and environmental factors, nc886 might explain why innate immune responses to pathogens are variable depending on biological settings.


Assuntos
Regulação da Expressão Gênica/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , RNA não Traduzido/imunologia , Animais , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , RNA não Traduzido/genética , Transdução de Sinais/imunologia , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Vírus/imunologia , eIF-2 Quinase/genética , eIF-2 Quinase/imunologia , eIF-2 Quinase/metabolismo
3.
Bioorg Med Chem Lett ; 30(4): 126884, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31879211

RESUMO

In this article, a series of 22 triarylpyrazole derivatives were evaluated for in vitro antiinflammatory activity as inhibitors of nitric oxide (NO) and prostaglandin E2 (PGE2) release induced by lipopolysaccharide (LPS) in murine RAW 264.7 macrophages. The synthesized compounds 1a-h, 2a-f and 3a-h were first examined for their cytotoxicity for determination of the non-toxic concentration for antiinflammatory screening, so that the inhibitory effects against NO and PGE2 production were not caused by non-specific cytotoxicity. Compounds 1h and 2f were the most active PGE2 inhibitors with IC50 values of 2.94 µM and 4.21 µM, respectively. Western blotting and cell-free COX-2 screening revealed that their effects were due to inhibition of COX-2 protein expression. Moreover, compound 1h exerted strong inhibitory effect on the expression of COX-2 mRNA in LPS-induced murine RAW 264.7 macrophages.


Assuntos
Anti-Inflamatórios/química , Dinoprostona/metabolismo , Óxido Nítrico/metabolismo , Pirazóis/química , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Desenho de Fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Pirazóis/síntese química , Pirazóis/farmacologia , Células RAW 264.7 , Relação Estrutura-Atividade
4.
Prostaglandins Other Lipid Mediat ; 144: 106347, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31229523

RESUMO

We previously reported the strong inhibitory potency of N-phenyl-N'-(4- benzyloxyphenoxycarbonyl)-4-chlorophenylsulfonyl hydrazide (PBCH) on lipopolysaccharide (LPS)-induced prostaglandin E2 (PGE2) production in macrophages. Herein, we characterized PBCH as a microsomal prostaglandin E synthase-1 (mPGES-1) inhibitor and evaluated its anti-inflammatory effects using in vivo experimental models. PBCH inhibited PGE2 production in various activated cells in addition to inhibiting the mPGES-1 activity. In the ear edema and paw edema rat models, PBCH significantly reduced ear thickness and paw swelling, respectively. Besides, in adjuvant-induced arthritis (AIA) rat model, PBCH decreased paw swelling, plasma rheumatoid factor (RF), and receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio. Furthermore, while PBCH reduced the plasma prostaglandin E metabolite (PGEM) levels, it did not affect the plasma levels of prostacyclin (PGI2) and thromboxane A2 (TXA2). Our data suggest that PBCH downregulates PGE2 production by interfering with the mPGES-1 activity, thus reducing edema and arthritis in rat models.


Assuntos
Anti-Inflamatórios/farmacologia , Dinoprostona/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Prostaglandina-E Sintases/antagonistas & inibidores , Tiazóis/farmacologia , Células A549 , Animais , Anti-Inflamatórios/uso terapêutico , Dinoprostona/biossíntese , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Humanos , Hidrazinas/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Tiazóis/uso terapêutico
5.
Bioorg Chem ; 86: 112-118, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30685642

RESUMO

EGFR inhibitors are well-known as anticancer agents. Quite differently, we report our effort to develop EGFR inhibitors as anti-inflammatory agents. Pyrimidinamide EGFR inhibitors eliciting low micromolar IC50 and the structurally close non-EGFR inhibitor urea analog were synthesized. Comparing their nitric oxide (NO) production inhibitory activity in peritoneal macrophages and RAW 246.7 macrophages indicated that their anti-inflammatory activity in peritoneal macrophages might be a sequence of EGFR inhibition. Further evaluations proved that compound 4d significantly and dose-dependently inhibits LPS-induced iNOS expression and IL-1ß, IL-6, and TNF-α production via NF-κB inactivation in peritoneal macrophages. Compound 4d might serve as a lead compound for development of a novel class of anti-inflammatory EGFR inhibitors.


Assuntos
Amidas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Benzamidas/farmacologia , Inflamação/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Amidas/síntese química , Amidas/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Benzamidas/síntese química , Benzamidas/química , Sobrevivência Celular/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Descoberta de Drogas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Células RAW 264.7 , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 27(11): 2613-2616, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408221

RESUMO

In an effort to identify novel anti-inflammatory compounds, a series of flavone derivatives were synthesized and biologically evaluated for their inhibitory effects on the production of nitric oxide (NO) and prostaglandin E2 (PGE2), representative pro-inflammatory mediators, in LPS-induced RAW 264.7 cells. Their structure-activity relationship was also investigated. In particular, we found that compound 3g displayed more potent inhibitory activities on PGE2 production, similar inhibitory activities on NO production and less weak cytotoxicity than luteolin, a natural flavone known as a potent anti-inflammatory agent.


Assuntos
Anti-Inflamatórios/química , Dinoprostona/metabolismo , Flavonas/química , Óxido Nítrico/metabolismo , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/toxicidade , Flavonas/síntese química , Flavonas/toxicidade , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Camundongos , Células RAW 264.7 , Relação Estrutura-Atividade
7.
Biol Pharm Bull ; 40(11): 1894-1902, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093336

RESUMO

Previously, we first reported the identification of four p-coumaroyl anthocyanins (petanin, peonanin, malvanin, and pelanin) from the tuber epidermis of colored potato (Solanum tuberosum L. cv JAYOUNG). In this study, we investigated the anti-oxidative and anti-inflammatory effects of a mixture of peonanin, malvanin, and pelanin (10 : 3 : 3; CAJY). CAJY displayed considerable radical scavenging capacity of 1, 1-diphenyl-2-picryl-hydrazyl (DPPH), increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase, and subsequent cellular glutathione content. These increases preceded the inhibition of lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) production. CAJY inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a concentration-dependent manner at the protein, mRNA, and promoter activity levels. These inhibitions caused attendant decreases in the production of prostaglandin E2 (PGE2). CAJY suppressed the production and mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Molecular data revealed that CAJY inhibited the transcriptional activity and translocation of nuclear factor κB (NF-κB) and phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT3. Taken together, these results suggest that the anthocyanin mixture exerts anti-inflammatory effects in macrophages, at least in part by reducing ROS production and inactivating NF-κB and STAT 1/3.


Assuntos
Antocianinas/farmacologia , Anti-Inflamatórios/farmacologia , Sequestradores de Radicais Livres/farmacologia , Extratos Vegetais/farmacologia , Propionatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Solanum tuberosum/química , Animais , Antocianinas/química , Anti-Inflamatórios/química , Ácidos Cumáricos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Sequestradores de Radicais Livres/química , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Tubérculos/química , Propionatos/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
J Cell Biochem ; 117(10): 2327-39, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26931732

RESUMO

α-Solanine, a trisaccharide glycoalkaloid, has been reported to possess anti-cancer effects. In this study, we investigated the anti-inflammatory effects of α-solanine isolated from "Jayoung" a dark purple-fleshed potato by examining its in vitro inhibitory effects on inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages and its in vivo effects on LPS-induced septic shock in a mouse model. α-Solanine suppressed the expression of iNOS and COX-2 both at protein and mRNA levels and consequently inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in LPS-induced RAW 264.7 macrophages. α-Solanine also reduced the production and mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) induced by LPS. Furthermore, molecular mechanism studies indicated that α-solanine inhibited LPS-induced activation of nuclear factor-κB (NF-κB) by reducing nuclear translocation of p65, degradation of inhibitory κBα (IκBα), and phosphorylation of IκB kinaseα/ß (IKKα/ß). In an in vivo experiment of LPS-induced endotoxemia, treatment with α-solanine suppressed mRNA expressions of iNOS, COX-2, IL-6, TNF-α, and IL-1ß, and the activation of NF-κB in liver. Importantly, α-solanine increased the survival rate of mice in LPS-induced endotoxemia and polymicrobial sepsis models. Taken together, our data suggest that the α-solanine may be a promising therapeutic against inflammatory diseases by inhibiting the NF-κB signaling pathway. J. Cell. Biochem. 117: 2327-2339, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Colite/prevenção & controle , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Choque Séptico/prevenção & controle , Solanina/farmacologia , Solanum tuberosum/química , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colite/induzido quimicamente , Colite/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Óxido Nítrico/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Bioorg Med Chem Lett ; 26(1): 94-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26602278

RESUMO

Preliminary hit-to-lead optimization of a novel series of phenylsulfonyl hydrazide derivatives, which were derived from the high throughput screening hit compound 1 (IC50=5700nM against PGE2 production), for a potent suppressor of PGE2 production is described. Subsequent optimization led to the identification of the potent lead compound 8n with IC50 values of 4.5 and 6.9nM, respectively, against LPS-induced PGE2 production and NO production in RAW 264.7 macrophage cells. In addition, 8n was about 30- and >150-fold more potent against mPGES-1 enzyme in a cell-free assay (IC50=70nM) than MK-886 and hit compound 1, respectively. Molecular docking suggests that compound 8n could inhibit PGE2 production by blocking the PGH2 binding site of human mPGES-1 enzyme.


Assuntos
Dinoprostona/biossíntese , Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Oxirredutases Intramoleculares/antagonistas & inibidores , Simulação de Acoplamento Molecular , Compostos de Sulfidrila/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Estrutura Molecular , Prostaglandina-E Sintases , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química
10.
Bioorg Med Chem Lett ; 26(21): 5193-5197, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27720548

RESUMO

In our previous research, a novel series of phenylsulfonyl hydrazide derivatives were found to reduce LPS-induced PGE2 levels in RAW 264.7 macrophage cells via an inhibition of mPGES-1 enzyme. Recently, it was found that a regioisomeric mixture of phenylsulfonyl hydrazide was formed depending on the reaction conditions, which favor either of two regioisomers. One regioisomer corresponds to a kinetic product (7a-7c) and the other regioisomer corresponds to a thermodynamic product (8a-8c). Among them, the structure of kinetic product 7b was confirmed by measuring single X-ray crystallography. In vitro PGE2 assay studies showed that the kinetic product (7a and 7b; IC50=0.69 and 0.55µM against PGE2) is generally more potent than the thermodynamic product (8a and 8b; IC50=>10 and 0.79µM against PGE2). A molecular docking study also exhibited that the kinetic product (7a) has a higher MolDock Score (-147.4) than that of 8a (-142.4), which is consistent with the PGE2 assay results. A new potent phenylsulfonyl hydrazide (7d; IC50=0.06µM against PGE2) without affecting COX-1 and COX-2 enzyme activities was identified based on these overall results.


Assuntos
Anti-Inflamatórios/farmacologia , Hidrazinas/síntese química , Hidrazinas/farmacologia , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/farmacologia , Animais , Linhagem Celular , Cristalografia por Raios X , Dinoprostona/antagonistas & inibidores , Hidrazinas/química , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
11.
J Nat Prod ; 79(4): 711-20, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26977531

RESUMO

Two chromone C-glucosides, biflorin (1) and isobiflorin (2), were isolated from the flower buds of Syzygium aromaticum L. (Myrtaceae). Here, inhibitory effects of 1 and 2 on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages were evaluated, and 1 (IC50 = 51.7 and 37.1 µM, respectively) was more potent than 2 (IC50 > 60 and 46.0 µM). The suppression of NO and PGE2 production by 1 correlated with inhibition of iNOS and COX-2 protein expression. Compound 1 reduced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression via inhibition of their promoter activities. Compound 1 inhibited the LPS-induced production and mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. Furthermore, 1 reduced p-STAT1 and p-p38 expression but did not affect the activity of nuclear factor κ light-chain enhancer of activated B cells (NF-κB) or activator protein 1 (AP-1). In a mouse model of LPS-induced endotoxemia, 1 reduced the mRNA levels of iNOS, COX-2, and TNF-α, and the phosphorylation-mediated activation of the signal transducer and activator of transcription 1 (STAT1), consequently improving the survival rates of mice. Compound 1 showed a significant anti-inflammatory effect on carrageenan-induced paw edema and croton-oil-induced ear edema in rats. The collective data indicate that the suppression of pro-inflammatory gene expression via p38 mitogen-activated protein kinase and STAT1 inactivation may be a mechanism for the anti-inflammatory activity of 1.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Naftoquinonas/isolamento & purificação , Naftoquinonas/farmacologia , Fator de Transcrição STAT1/efeitos dos fármacos , Syzygium/química , Animais , Anti-Inflamatórios/farmacologia , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/antagonistas & inibidores , Modelos Animais de Doenças , Edema/induzido quimicamente , Endotoxemia/tratamento farmacológico , Flores/química , Mediadores da Inflamação , Interleucina-6 , Masculino , Camundongos , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , Naftoquinonas/química , Óxido Nítrico/biossíntese , Ratos , Fator de Transcrição AP-1 , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Biol Pharm Bull ; 38(7): 1081-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26133719

RESUMO

To identify bioactive natural products possessing anti-inflammatory activity, the potential of fulgidic acid from the rhizomes of Cyperus rotundus and the underlying mechanisms involved in its anti-inflammatory activity were evaluated in this study. Fulgidic acid reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Consistent with these findings, fulgidic acid suppressed the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein level, as well as iNOS, COX-2, TNF-α, and IL-6 at mRNA levels. Fulgidic acid suppressed the LPS-induced transcriptional activity of activator protein-1 (AP-1) as well as the phosphorylation of c-Fos and c-Jun. On the other hand, fulgidic acid did not show any effect on LPS-induced nuclear factor κB (NF-κB) activity. Taken together, these results suggest that the anti-inflammatory effect of fulgidic acid is associated with the suppression of iNOS, COX-2, TNF-α, and IL-6 expression through down-regulating AP-1 activation in LPS-induced RAW264.7 macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Cyperus , Ácidos Linoleicos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ácidos Linoleicos/isolamento & purificação , Lipopolissacarídeos , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Rizoma , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Bioorg Med Chem Lett ; 24(23): 5418-22, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25453800

RESUMO

We present the synthesis and biological evaluation of a collection of s-triazine derivatives as a novel scaffold of compounds with the capability to inhibit the PGE2 production in LPS-induced RAW 264.7 macrophage cells. A total of 12 derivatives were synthesized and assayed for PGE2 reduction at 10 µM concentration. Two compounds (7b and 7i) exhibiting >90% inhibition of PGE2 production were found to have IC50 values of 5.76 and 5.52 µM, respectively. They were counter screened for inhibition on COX-2 activity in a cell free assay. Specifically, compound 7i (R¹ = 4-Bn-Ph, R² = Cl, R³ = Ph, R5 = CO2Me) was highly active in cells while maintaining little COX-2 inhibition (∼0% at 10 µM). Molecular docking study provides the possibility that compound 7i could inhibit PGE2 production by blocking the PGH2 binding site of mPGES-1 instead of COX-2 enzyme. Based on this result, our synthetic efforts will focus on intensive structure-activity relationship (SAR) study of s-triazine scaffold to discovery a potential PGE2 synthesis inhibitor.


Assuntos
Dinoprostona/biossíntese , Macrófagos/efeitos dos fármacos , Triazinas/síntese química , Triazinas/farmacologia , Animais , Dinoprostona/antagonistas & inibidores , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Oxirredutases Intramoleculares/antagonistas & inibidores , Macrófagos/metabolismo , Camundongos , Prostaglandina-E Sintases , Relação Estrutura-Atividade , Triazinas/química
14.
Phytomedicine ; 109: 154553, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610153

RESUMO

BACKGROUND: We previously reported the potential inhibitory activity of 3',4'-dihydroxyflavone (DHF) on nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated macrophages. PURPOSE: We investigated the underlying molecular mechanisms of DHF in LPS-activated macrophages and evaluated its effect on LPS-induced septic shock in mice. METHODS: To explore the anti-inflammatory effect of DHF, nitrite, PGE2, and cytokines were measured in vitro and in vivo experiments. In addition, to verify the molecular signaling pathway, quantitative real time-PCR, luciferase assay, nuclear extraction, electrophoretic mobility shift assay, immunocytochemistry, immunoprecipitation, molecular docking analysis, and myeloid differentiation 2 (MD2)-LPS binding assay were conducted. RESULTS: DHF suppressed the LPS-induced expression of proinflammatory mediators through nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) inactivation pathways in RAW 264.7 macrophages. Importantly, molecular docking analysis and in vitro binding assays showed that DHF interacts with the hydrophobic pocket of MD2 and then interferes with the interaction between LPS and toll-like receptor 4 (TLR4). DHF inhibited LPS-induced oxidative stress by upregulating nuclear factor erythroid 2-related factor 2 (Nrf2). Treatment of LPS-induced endotoxemia mice with DHF reduced the expression levels of pro-inflammatory mediators via the inactivation of NF-κB, AP-1, and signal transducer and activator of transcription 1 (STAT1) in the lung tissue, thus increasing the survival rate. CONCLUSION: Taken together, our data first time revealed the underlying mechanism of the DHF-dependent anti-inflammatory effect by preventing LPS from binding to the TLR4/MD2 complex. Therefore, DHF may be a possible anti-inflammatory agent for the treatment of LPS-mediated inflammatory diseases.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Camundongos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia
15.
Biomed Pharmacother ; 155: 113716, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162374

RESUMO

UV rays constitute an extremely important environmental factor known to operate adaptative mechanisms that maintain biological homeostasis in the skin, adrenal glands, and the brain. The skin is extremely vulnerable to UV rays. UV rays deform collagen, the main component of elastic fibers, decreasing its normal function, and ultimately reducing skin's elasticity. We confirmed that psychological stress occurring during the early stages of UVB-irradiation degraded collagen function by inhibiting production rather than the decomposition of collagen, thereby promoting skin aging. UV irradiation for 0-2 weeks increased the level of a stress factor, corticosterone (CORT). High-performance liquid chromatography and western blot analysis confirmed that the increase was caused by enhanced CYP11B1/2 levels during steroid synthesis in the adrenal gland. Precursor levels decreased significantly during the two weeks of UV irradiation. Skin collagen and collagen fibers reduced drastically during this time. Furthermore, the administration of osilodrostat, a USFDA-approved drug that selectively inhibits CYP11B1/2, preserved skin collagen. The mechanism underlying the reduction of CORT by osilodrostat confirmed that the amount of skin collagen could be preserved with treatment. In addition, upon suppression of the CORT receptor, the amount of collagen was controlled, and skin aging was suppressed by the hypothalamic-pituitary-adrenal axis. Therefore, this study confirmed an inverse relationship between adrenal CYP11B1/2 levels and collagen during the initial stages of UV irradiation of the skin. The findings of this study may be useful for developing new detection mechanisms for aging, following their further verification.


Assuntos
Sistema Hipotálamo-Hipofisário , Envelhecimento da Pele , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Corticosterona/metabolismo , Esteroide 11-beta-Hidroxilase/metabolismo , Raios Ultravioleta/efeitos adversos , Pele/metabolismo , Colágeno/metabolismo
16.
Front Pharmacol ; 13: 857789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529447

RESUMO

TMS-HDMF-5z is a hybrid of the natural products mosloflavone and resveratrol. It was discovered to show potent inhibitory effects against lipopolysaccharide (LPS)-induced production of inflammatory mediators in RAW 264.7 macrophages. However, its mechanism of action is unknown. Hence this study aimed to demonstrate and explore in vitro and in vivo anti-inflammatory effects of TMS-HDMF-5z and its mechanism of action employing RAW 264.7 macrophages and carrageenan-induced hind paw edema. This work revealed that TMS-HDMF-5z suppressed the LPS-induced inducible nitric-oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein, mRNA, and promoter binding levels and tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6, and interferon-ß (IFN-ß) at the mRNA expression in RAW 264.7 macrophages. The results showed that TMS-HDMF-5z reduced the transcription and DNA binding activities of nuclear factor-κB (NF-κB) through inhibiting nuclear translocation of p65 and phosphorylation of κB inhibitor α (IκBα), IκB kinase (IKK), and TGF-ß activated kinase 1 (TAK1). Additionally, TMS-HDMF-5z attenuated the LPS-induced transcriptional and DNA binding activities of activator protein-1 (AP-1) by suppressing nuclear translocation of phosphorylated c-Fos, c-Jun, and activating transcription factor 2 (ATF2). TMS-HDMF-5z also reduced the LPS-induced phosphorylation of Janus kinase 1/2 (JAK1/2), signal transducers and activators of transcription 1/3 (STAT1/3), p38 mitogen-activated protein kinase (MAPK), and MAPK-activated protein kinase 2 (MK2). In rats, TMS-HDMF-5z alleviated carrageenan-induced hind paw edema through the suppressing iNOS and COX-2 via NF-κB, AP-1, and STAT1/3 inactivation. Collectively, the TMS-HDMF-5z-mediated inhibition of NF-κB, AP-1, and STAT1/3 offer an opportunity for the development of a potential treatment for inflammatory diseases.

17.
Mol Ther Oncolytics ; 24: 683-694, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35284627

RESUMO

Elucidation of the interplay between viruses and host cells is crucial for taming viruses to benefit human health. Cancer therapy using adenovirus, called oncolytic virotherapy, is a promising treatment option but is not robust in all patients. In addition, inefficient replication of human adenovirus in mouse hampered the development of an in vivo model for preclinical evaluation of therapeutically engineered adenovirus. nc886 is a human non-coding RNA that suppresses Protein Kinase R (PKR), an antiviral protein. In this study, we have found that nc886 greatly promotes adenoviral gene expression and replication. Remarkably, the stimulatory effect of nc886 is not dependent on its function to inhibit PKR. Rather, nc886 facilitates the nuclear entry of adenovirus via modulating the kinesin pathway. nc886 is not conserved in mouse and, when xenogeneically expressed in mouse cells, promotes adenovirus replication. Our investigation has discovered a novel mechanism of how a host ncRNA plays a pro-adenoviral role. Given that nc886 expression is silenced in a subset of cancer cells, our study highlights that oncolytic virotherapy might be inefficient in those cells. Furthermore, our findings open future possibilities of harnessing nc886 to improve the efficacy of oncolytic adenovirus and to construct nc886-expressing transgenic mice as an animal model.

18.
Pharmaceutics ; 13(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834209

RESUMO

The present study demonstrated that 2'-hydroxycinnamaldehyde (2'-HCA) induced apoptosis in human promyelocytic leukemia HL-60 cells through the activation of mitochondrial pathways including (1) translocation of Bim and Bax from the cytosol to mitochondria, (2) downregulation of Bcl-2 protein expression, (3) cytochrome c release into the cytosol, (4) loss of mitochondrial membrane potential (ΔΨm), and (5) caspase activation. 2'-HCA also induced the activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase1/2 (ERK1/2) in HL-60 cells. The pharmacological and genetic inhibition of JNK effectively prevented 2'-HCA-induced apoptosis and activator protein-1 (AP-1)-DNA binding. In addition, 2'-HCA resulted in the accumulation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH) and protein thiols (PSH) in HL-60 cells. NAC treatment abrogated 2'-HCA-induced JNK phosphorylation, AP-1-DNA binding, and Bim mitochondrial translocation, suggesting that oxidative stress may be required for 2'-HCA-induced intrinsic apoptosis. Xenograft mice inoculated with HL-60 leukemia cells demonstrated that the intraperitoneal administration of 2'-HCA inhibited tumor growth by increasing of TUNEL staining, the expression levels of nitrotyrosine and pro-apoptotic proteins, but reducing of PCNA protein expression. Taken together, our findings suggest that 2'-HCA induces apoptosis via the ROS-dependent JNK pathway and could be considered as a potential therapeutic agent for leukemia.

19.
Biomed Pharmacother ; 142: 111961, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34329824

RESUMO

We previously reported the anticancer activity of 4-(4-fluorobenzylcarbamoylmethyl)-3-(4-cyclohexylphenyl)-2-[3-(N,N-dimethylureido)-N'-methylpropylamino]-3,4-dihydroquinazoline (OZ-001), a T-type calcium channel (TTCC) blocker, against non-small cell lung cancer (NSCLC) in vitro and in vivo. Here, we evaluated the synergistic effect of OZ-001 and cisplatin on A549 human lung cancer cells and A549 xenograft mice. Our study demonstrated that treatment with OZ-001 and cisplatin sensitized A549 cells to cisplatin and significantly inhibited cell growth, increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and induced poly (ADP-ribose) polymerase (PARP) cleavage in A549 cells and an A549 xenograft tumor mouse model. Moreover, our findings showed that mechanistic target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), and signal transducer and activator of transcription (STAT3) inactivation was required for apoptosis induced by the combination of OZ-001 and cisplatin in in vitro and in vivo experiments. Our results suggest that combined treatment with OZ-001 and cisplatin could potentiate antiproliferative effects via suppression of the mTOR/p70S6K and STAT3 pathways and may be considered a potential therapeutic agent for NSCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Food Funct ; 12(6): 2672-2685, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33656018

RESUMO

Obesity is an increasing health problem worldwide as it is the major risk factor for metabolic diseases. In the present study, we investigated the anti-obesity effects of WHS by examining its effects on high fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed either a normal diet (ND) or a high fat diet (HFD) with or without WHS. At the end of the experiment, we observed the changes in their body weight and white adipose tissue (WAT) weight and lipid profiles in plasma. We performed western blot and histological analyses of WAT and liver to elucidate the molecular mechanisms of action. We also conducted fecal 16S rRNA analysis for investigating the gut microbiota. Our results indicated that pre- and post-oral administration of WHS significantly prevented body weight gain and reduced body fat weight in HFD-induced obese mice. In addition, WHS was found to improve adipocyte hypertrophy and liver fat accumulation by regulating the AMPK and AKT/mTOR pathways. WHS ameliorated hyperlipidemia by reducing total cholesterol and low-density lipoprotein (LDL) and decreased the energy metabolism-related hormones, leptin and insulin, in mouse plasma. Furthermore, we found that WHS modulated gut dysbiosis by normalizing HFD-induced changes. Taken together, our in vivo data implicate that WHS can be considered as a potential dietary supplement for alleviating obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Hydrangea/química , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Lipídeos/sangue , Camundongos , Camundongos Obesos , Folhas de Planta/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA