Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(3): 1020-1037, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931682

RESUMO

Vernalization, a long-term cold-mediated acquisition of flowering competence, is critically regulated by VERNALIZATION INSENSITIVE 3 (VIN3), a gene induced by vernalization in Arabidopsis. Although the function of VIN3 has been extensively studied, how VIN3 expression itself is upregulated by long-term cold is not well understood. In this study, we identified a vernalization-responsive cis-element in the VIN3 promoter, VREVIN3, composed of a G-box and an evening element (EE). Mutations in either the G-box or the EE prevented VIN3 expression from being fully induced upon vernalization, leading to defects in the vernalization response. We determined that the core clock proteins CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE-ELONGATED HYPOCOTYL (LHY) associate with the EE of VREVIN3, both in vitro and in vivo. In a cca1 lhy double mutant background harboring a functional FRIGIDA allele, long-term cold-mediated VIN3 induction and acceleration of flowering were impaired, especially under mild cold conditions such as at 12°C. During prolonged cold exposure, oscillations of CCA1/LHY transcripts were altered, while CCA1 abundance increased at dusk, coinciding with the diurnal peak of VIN3 transcripts. We propose that modulation of the clock proteins CCA1 and LHY participates in the systems involved in sensing long-term cold for the activation of VIN3 transcription.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Hipocótilo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Exp Bot ; 74(3): 864-877, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36416766

RESUMO

N 6-methyladenosine (m6A) RNA methylation has been shown to play a crucial role in plant development and floral transition. Two recent studies have identified FIONA1 as an m6A methyltransferase that regulates the floral transition in Arabidopsis through influencing the stability of CONSTANS (CO), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), and FLOWERING LOCUS C (FLC). In this study, we confirmed that FIONA1 is an m6A methyltransferase that installs m6A marks in a small group of mRNAs. Furthermore, we show that, in addition to its role in influencing the stability of CO, SOC1, and FLC, FIONA1-mediated m6A methylation influences the splicing of FLC, a key floral repressor, and the stability of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 3 (SPL3) and SEPALLATA3 (SEP3), floral activators, which together play a vital role in floral transition in Arabidopsis. Our study confirms the function of FIONA1 as an m6A methyltransferase and suggests a close molecular link between FIONA1-mediated m6A methylation and the splicing of FLC and the destabilization of SPL3 and SEP3 in flowering time control.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metiltransferases/genética , Flores , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Regulação da Expressão Gênica de Plantas
3.
PLoS Genet ; 14(2): e1007208, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29447166

RESUMO

Ranunculus trichophyllus is an amphibious plant that produces thin and cylindrical leaves if grown under water but thick and broad leaves if grown on land. We found that such heterophylly is widely controlled by two plant hormones, abscisic acid (ABA) and ethylene, which control terrestrial and aquatic leaf development respectively. Aquatic leaves produced higher levels of ethylene but lower levels of ABA than terrestrial leaves. In aquatic leaves, their distinct traits with narrow shape, lack of stomata, and reduced vessel development were caused by EIN3-mediated overactivation of abaxial genes, RtKANADIs, and accompanying with reductions of STOMAGEN and VASCULAR-RELATED NAC-DOMAIN7 (VDN7). In contrast, in terrestrial leaves, ABI3-mediated activation of the adaxial genes, RtHD-ZIPIIIs, and STOMAGEN and VDN7 established leaf polarity, and stomata and vessel developments. Heterophylly of R.trichophyllus could be also induced by external cues such as cold and hypoxia, which is accompanied with the changes in the expression of leaf polarity genes similar to aquatic response. A closely-related land plant R. sceleratus did not show such heterophyllic responses, suggesting that the changes in the ABA/ethylene signaling and leaf polarity are one of key evolutionary steps for aquatic adaptation.


Assuntos
Aclimatação/genética , Ranunculus/crescimento & desenvolvimento , Ranunculus/genética , Ácido Abscísico/metabolismo , Aclimatação/efeitos dos fármacos , Arabidopsis , Ecossistema , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ranunculus/metabolismo , Sementes/crescimento & desenvolvimento
4.
Proc Natl Acad Sci U S A ; 114(8): 2078-2083, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28130550

RESUMO

The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas , N-Glicosil Hidrolases/genética , Óvulo Vegetal/genética , Pólen/genética , Transativadores/genética , DNA Glicosilases , Elementos de DNA Transponíveis , Endosperma/genética , Impressão Genômica , Células Germinativas , Mutação , Regiões Promotoras Genéticas , Transcrição Gênica
5.
Plant J ; 93(6): 977-991, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29356153

RESUMO

Kinetochore, a protein super-complex on the centromere of chromosomes, mediates chromosome segregation during cell division by providing attachment sites for spindle microtubules. The NDC80 complex, composed of four proteins, NDC80, NUF2, SPC24 and SPC25, is localized at the outer kinetochore and connects spindle fibers to the kinetochore. Although it is conserved across species, functional studies of this complex are rare in Arabidopsis. Here, we characterize a recessive mutant, meristem unstructured-1 (mun-1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun-1 is a weak allele because of the insertion of T-DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9-mediated mutagenesis showed zygotic embryonic lethality similar to nuf2-1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two-hybrid assay and in planta co-immunoprecipitation. MUN is co-localized at the centromere with HTR12/CENH3, which is a centromere-specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of kinetochore components.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/genética , Proteínas Associadas aos Microtúbulos/genética , Sementes/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Divisão Celular/genética , Segregação de Cromossomos , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Homologia de Sequência de Aminoácidos
6.
Plant J ; 93(1): 79-91, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29086456

RESUMO

TATA-binding protein-associated factors (TAFs) are general transcription factors within the transcription factor IID (TFIID) complex, which recognizes the core promoter of genes. In addition to their biochemical function, it is known that several TAFs are involved in the regulation of developmental processes. In this study, we found that TAF15b affects flowering time, especially through the autonomous pathway (AP) in Arabidopsis. The mutant taf15b shows late flowering compared with the wild type plant during both long and short days, and vernalization accelerates the flowering time of taf15b. In addition, taf15b shows strong upregulation of FLOWERING LOCUS C (FLC), a flowering repressor in Arabidopsis, and the flc taf15b double mutant completely offsets the late flowering of taf15b, indicating that TAF15b is a typical AP gene. The taf15b mutant also shows increased transcript levels of COOLAIR, an antisense transcript of FLC. Consistently, chromatin immunoprecipitation (ChIP) analyses showed that the TAF15b protein is enriched around both sense and antisense transcription start sites of the FLC locus. In addition, co-immunoprecipitation showed that TAF15b interacts with RNA polymerase II (Pol II), while ChIP showed increased enrichment of the phosphorylated forms, both serine 2 (Ser2) and Ser5, of the C-terminal domain of Pol II at the FLC locus, which is indicative of transcriptional elongation. Finally, taf15b showed higher enrichment of the active histone marker, H3K4me3, on FLC chromatin. Taken together, our results suggest that TAF15b affects flowering time through transcriptional repression of FLC in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cromatina/genética , Imunoprecipitação da Cromatina , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Histonas/genética , Proteínas de Domínio MADS/genética , Mutação , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores de Tempo , Regulação para Cima
7.
Plant Physiol ; 171(2): 1128-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208270

RESUMO

The ATP-dependent SWR1 chromatin remodeling complex (SWR1-C) exchanges the histone H2A-H2B dimer with the H2A.Z-H2B dimer, producing variant nucleosomes. Arabidopsis thaliana SWR1-C contributes to the active transcription of many genes, but also to the repression of genes that respond to environmental and developmental stimuli. Unlike other higher eukaryotic H2A.Z deposition mutants (which are embryonically lethal), Arabidopsis SWR1-C component mutants, including arp6, survive and display a pleiotropic developmental phenotype. However, the molecular mechanisms of early flowering, leaf serration, and the production of extra petals in arp6 have not been completely elucidated. We report here that SWR1-C is required for miRNA-mediated developmental control via transcriptional regulation. In the mutants of the components of SWR1-C such as arp6, sef, and pie1, miR156 and miR164 levels are reduced at the transcriptional level, which results in the accumulation of target mRNAs and associated morphological changes. Sequencing of small RNA libraries confirmed that many miRNAs including miR156 decreased in arp6, though some miRNAs increased. The arp6 mutation suppresses the accumulation of not only unprocessed primary miRNAs, but also miRNA-regulated mRNAs in miRNA processing mutants, hyl1 and serrate, which suggests that arp6 has a transcriptional effect on both miRNAs and their targets. We consistently detected that the arp6 mutant exhibits increased nucleosome occupancy at the tested MIR gene promoters, indicating that SWR1-C contributes to transcriptional activation via nucleosome dynamics. Our findings suggest that SWR1-C contributes to the fine control of plant development by generating a balance between miRNAs and target mRNAs at the transcriptional level.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Ciclopentanos/farmacologia , Meio Ambiente , Flores/efeitos dos fármacos , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , MicroRNAs/genética , Mutação/genética , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Oxilipinas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítio de Iniciação de Transcrição , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
8.
Mol Cell ; 32(5): 617-30, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19061637

RESUMO

Seasonal changes in day length are perceived by plant photoreceptors and transmitted to the circadian clock to modulate developmental responses such as flowering time. Blue-light-sensing cryptochromes, the E3 ubiquitin-ligase COP1, and clock-associated proteins ELF3 and GI regulate this process, although the regulatory link between them is unclear. Here we present data showing that COP1 acts with ELF3 to mediate day length signaling from CRY2 to GI within the photoperiod flowering pathway. We found that COP1 and ELF3 interact in vivo and show that ELF3 allows COP1 to interact with GI in vivo, leading to GI degradation in planta. Accordingly, mutation of COP1 or ELF3 disturbs the pattern of GI cyclic accumulation. We propose a model in which ELF3 acts as a substrate adaptor, enabling COP1 to modulate light input signal to the circadian clock through targeted destabilization of GI.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ritmo Circadiano/fisiologia , Flores/fisiologia , Fotoperíodo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Biológicos , Mutação/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Fatores de Transcrição/genética , Ubiquitinação
9.
Plant Cell ; 23(1): 289-303, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21282526

RESUMO

The flowering of Arabidopsis thaliana winter annuals is delayed until the subsequent spring by the strong floral repressor FLOWERING LOCUS C (FLC). FRIGIDA (FRI) activates the transcription of FLC, but the molecular mechanism remains elusive. The fri mutation causes early flowering with reduced FLC expression similar to frl1, fes1, suf4, and flx, which are mutants of FLC-specific regulators. Here, we report that FRI acts as a scaffold protein interacting with FRL1, FES1, SUF4, and FLX to form a transcription activator complex (FRI-C). Each component of FRI-C has a specialized function. SUF4 binds to a cis-element of the FLC promoter, FLX and FES1 have transcriptional activation potential, and FRL1 and FES1 stabilize the complex. FRI-C recruits a general transcription factor, a TAF14 homolog, and chromatin modification factors, the SWR1 complex and SET2 homolog. Complex formation was confirmed by the immunoprecipitation of FRI-associated proteins followed by mass spectrometric analysis. Our results provide insight into how a specific transcription activator recruits chromatin modifiers to regulate a key flowering gene.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cromatina/metabolismo , Proteínas de Domínio MADS/metabolismo , Ativação Transcricional , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Mutação , Filogenia
10.
Plant J ; 69(2): 332-42, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21950734

RESUMO

Plants monitor changes in day length to coordinate flowering with favorable seasons to increase their fitness. The day-length specific induction of FLOWERING LOCUS T (FT) regulated by CONSTANS (CO) is the crucial aspect of photoperiodic flowering in Arabidopsis thaliana. Recent studies have elucidated some mechanisms of CO-dependent FT induction. Here, we demonstrate another mechanism of CO-dependent FT regulation. Our results indicate that CO protein partially regulates FT transcription by forming a complex with ASYMMETRIC LEAVES 1 (AS1) protein, which regulates leaf development partly by controlling gibberellin (GA) levels. We identified AS1 as a CO-interacting protein in yeast and verified their interaction in vitro and in planta. We also showed that the temporal and spatial expression pattern of AS1 overlapped with that of CO. In addition, as1 mutants showed GA-independent delayed flowering under different light/dark conditions. FT expression levels in the as1 mutants and the SUC2:CO-HA/as1 line under long-day and 12-h light/12-h dark conditions were reduced compared with wild-type plants and the SUC2:HA-CO line, respectively. Moreover, AS1 bound directly to the specific regions of the FT promoter in vivo. These results indicate that CO forms a functional complex with AS1 to regulate FT expression and that AS1 plays different roles in two regulatory pathways, both of which concomitantly regulate the precise timing of flowering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Mutação , Fenótipo , Fotoperíodo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Transdução de Sinais/genética , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
11.
Dev Cell ; 14(2): 183-92, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18267087

RESUMO

Jasmonic acid (JA) plays pivotal roles in diverse plant biological processes, including wound response. Chloroplast lipid hydrolysis is a critical step for JA biosynthesis, but the mechanism of this process remains elusive. We report here that DONGLE (DGL), a homolog of DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1), encodes a chloroplast-targeted lipase with strong galactolipase and weak phospholipase A(1) activity. DGL is expressed in the leaves and has a specific role in maintaining basal JA content under normal conditions, and this expression regulates vegetative growth and is required for a rapid JA burst after wounding. During wounding, DGL and DAD1 have partially redundant functions for JA production, but they show different induction kinetics, indicating temporally separated roles: DGL plays a role in the early phase of JA production, and DAD1 plays a role in the late phase of JA production. Whereas DGL and DAD1 are necessary and sufficient for JA production, phospholipase D appears to modulate wound response by stimulating DGL and DAD1 expression.


Assuntos
Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Ciclopentanos/metabolismo , Genes de Plantas , Variação Genética , Oxilipinas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Fenótipo , Fosfolipase D/metabolismo , Fosfolipases A/metabolismo , Fosfolipases A1/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plântula/ultraestrutura , Ativação Transcricional/genética
12.
Nat Genet ; 36(2): 167-71, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14745450

RESUMO

Cold induces expression of a number of genes that encode proteins that enhance tolerance to freezing temperatures in plants. A cis-acting element responsive to cold and drought, the C-repeat/dehydration-responsive element (C/DRE), was identified in the Arabidopsis thaliana stress-inducible genes RD29A and COR15a and found in other cold-inducible genes in various plants. C/DRE-binding factor/DRE-binding protein (CBF/DREB) is an essential component of the cold-acclimation response, but the signaling pathways and networks are mostly unknown. Here we used targeted genetic approach to isolate A. thaliana mutants with altered cold-responsive gene expression (acg) and identify ACG1 as a negative regulator of the CBF/DREB pathway. acg1 flowered late and had elevated expression of FLOWERING LOCUS C (FLC), a repressor of flowering encoding a MADS-box protein. We showed that acg1 is a null allele of the autonomous pathway gene FVE. FVE encodes a homolog of the mammalian retinoblastoma-associated protein, a component of a histone deacetylase (HDAC) complex involved in transcriptional repression. We also showed that plants sense intermittent cold stress through FVE and delay flowering with increasing expression of FLC. Dual roles of FVE in regulating the flowering time and the cold response may have an evolutionary advantage for plants by increasing their survival rates.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Topos Floridos/crescimento & desenvolvimento , Histona Desacetilases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Topos Floridos/genética , Topos Floridos/metabolismo , Histona Desacetilases/metabolismo , Proteínas de Domínio MADS/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
13.
Elife ; 122023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722843

RESUMO

To synchronize flowering time with spring, many plants undergo vernalization, a floral-promotion process triggered by exposure to long-term winter cold. In Arabidopsis thaliana, this is achieved through cold-mediated epigenetic silencing of the floral repressor, FLOWERING LOCUS C (FLC). COOLAIR, a cold-induced antisense RNA transcribed from the FLC locus, has been proposed to facilitate FLC silencing. Here, we show that C-repeat (CRT)/dehydration-responsive elements (DREs) at the 3'-end of FLC and CRT/DRE-binding factors (CBFs) are required for cold-mediated expression of COOLAIR. CBFs bind to CRT/DREs at the 3'-end of FLC, both in vitro and in vivo, and CBF levels increase gradually during vernalization. Cold-induced COOLAIR expression is severely impaired in cbfs mutants in which all CBF genes are knocked-out. Conversely, CBF-overexpressing plants show increased COOLAIR levels even at warm temperatures. We show that COOLAIR is induced by CBFs during early stages of vernalization but COOLAIR levels decrease in later phases as FLC chromatin transitions to an inactive state to which CBFs can no longer bind. We also demonstrate that cbfs and FLCΔCOOLAIR mutants exhibit a normal vernalization response despite their inability to activate COOLAIR expression during cold, revealing that COOLAIR is not required for the vernalization process.


Long spells of cold winter weather may feel miserable, but they are often necessary for spring to blossom. Indeed, many plants need to face a prolonged period of low temperatures to be able to flower; this process is known as vernalization. While the molecular mechanisms which underpin vernalization are well-known, it is still unclear exactly how plants can 'sense' the difference between short and long periods of cold. Jeon, Jeong et al. set out to explore this question by focusing on COOLAIR, one of the rare genetic sequences identified as potentially being able to trigger vernalization. COOLAIR is a long noncoding RNA, a partial transcript of a gene that will not be 'read' by the cell to produce a protein but which instead regulates how and when certain genes are being switched on. COOLAIR emerges from the locus of the FLC gene, which is one of the main repressors of flowering, and it gradually accumulates in the plant when temperatures remain low for a long period. While some evidence suggests that COOLAIR may help to switch off FLC, other studies have raised some doubts about its involvement in vernalization. In response, Jeon, Jeong et al. examined the FLC gene in a range of plants closely related to A. thaliana, and in which COOLAIR also accumulates upon cold exposure. This helped them identify a class of proteins, known as CBFs, which could bind to sequences near the FLC gene to activate the production of COOLAIR when the plants were kept in cold conditions for a while. CBFs were already known to help plants adapt to short cold snaps, but these experiments confirmed that they could act as both short- and long-term cold sensors. This work allowed Jeon, Jeong et al. to propose a model in which CBF and therefore COOLAIR levels increase as the cold persists, until changes in the structure of the FLC gene prevent CBF from binding to it and COOLAIR production drops. Unexpectedly, examining the fate of mutants which could not produce COOLAIR revealed that these plants could still undergo vernalization, suggesting that the long noncoding RNA is in fact not necessary for this process. These results should prompt other scientists to further investigate the role of COOLAIR in vernalization; they also give insight into how coding and noncoding sequences may have evolved together in various members of the A. thaliana family to adapt to the environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Flores/fisiologia , Arabidopsis/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
14.
J Biol Chem ; 286(22): 19259-69, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21464134

RESUMO

The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na(+) absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC. In the present study, we report that GRK2 also regulates ENaC by a mechanism that does not depend on its kinase activity. We show that a wild-type GRK2 (wtGRK2) and a kinase-dead GRK2 mutant ((K220R)GRK2), but not a GRK2 mutant that lacks the C-terminal RH domain (ΔRH-GRK2) or a GRK2 mutant that cannot interact with Gαq/11/14 ((D110A)GRK2), increase activity of ENaC. GRK2 up-regulates the basal activity of the channel as a consequence of its RH domain binding the α-subunits of Gq/11. We further found that expression of constitutively active Gαq/11 mutants significantly inhibits activity of ENaC. Conversely, co-expression of siRNA against Gαq/11 increases ENaC activity. The effect of Gαq on ENaC activity is not due to change in ENaC membrane expression and is independent of Nedd4-2. These findings reveal a novel mechanism by which GRK2 and Gq/11 α-subunits regulate the activity ENaC.


Assuntos
Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/biossíntese , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Epiteliais/citologia , Canais Epiteliais de Sódio/genética , Quinase 2 de Receptor Acoplado a Proteína G/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Ubiquitina-Proteína Ligases Nedd4 , Estrutura Terciária de Proteína , Ratos , Ratos Endogâmicos F344 , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Plant Physiol ; 156(4): 1867-77, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21653190

RESUMO

A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Padronização Corporal/genética , Proteínas de Ligação a DNA/metabolismo , Flores/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Estabilidade de RNA/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Mutação/genética , Fotoperíodo , Raízes de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcrição Gênica
16.
Opt Express ; 20(14): 15440-51, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22772240

RESUMO

THz metamaterials are employed to examine changes in the meta-resonances when two anisotropic organic materials, liquid crystal and carbon nanotubes, are placed on top of metamaterials. In both anisotropic double split-ring resonators and isotropic four-fold symmetric split-ring resonators, anisotropic interactions between the electric field and organic materials are enhanced in the vicinity of meta-resonances. In liquid crystal, meta-resonance frequency shift is observed with the magneto-optical coupling giving rise to the largest anisotropic shift. In carbon nanotube, meta-resonance absorptions, parallel and perpendicular to nanotube direction, experience different amount of broadening of Lorentzian oscillator of meta-resonance. Investigation reported here opens the application of metamaterials as a sensor for anisotropic materials.

17.
Plant Cell ; 21(10): 3185-97, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19825833

RESUMO

The appropriate timing of flowering is pivotal for reproductive success in plants; thus, it is not surprising that flowering is regulated by complex genetic networks that are fine-tuned by endogenous signals and environmental cues. The Arabidopsis thaliana flowering-time gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) encodes a MADS box transcription factor and is one of the key floral activators integrating multiple floral inductive pathways, namely, long-day, vernalization, autonomous, and gibberellin-dependent pathways. To elucidate the downstream targets of SOC1, microarray analyses were performed. The analysis revealed that the soc1-2 knockout mutant has increased, and an SOC1 overexpression line has decreased, expression of cold response genes such as CBFs (for CRT/DRE binding factors) and COR (for cold regulated) genes, suggesting that SOC1 negatively regulates the expression of the cold response genes. By contrast, overexpression of cold-inducible CBFs caused late flowering through increased expression of FLOWERING LOCUS C (FLC), an upstream negative regulator of SOC1. Our results demonstrate the presence of a feedback loop between cold response and flowering-time regulation; this loop delays flowering through the increase of FLC when a cold spell is transient as in fall or early spring but suppresses the cold response when floral induction occurs through the repression of cold-inducible genes by SOC1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Temperatura Baixa , Flores/metabolismo , Flores/fisiologia , Proteínas de Domínio MADS/metabolismo , Proteínas de Domínio MADS/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Domínio MADS/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos
18.
Sci Rep ; 12(1): 10963, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768490

RESUMO

Vernalization, an acceleration of flowering after long-term winter cold, is an intensively studied flowering mechanism in winter annual plants. In Arabidopsis, Polycomb Repressive Complex 2 (PRC2)-mediated suppression of the strong floral repressor, FLOWERING LOCUS C (FLC), is critical for vernalization and a PHD finger domain protein, VERNALIZATION INSENSITIVE 3 (VIN3), recruits PRC2 on FLC chromatin. The level of VIN3 was found to gradually increase in proportion to the length of cold period during vernalization. However, how plants finely regulate VIN3 expression according to the cold environment has not been completely elucidated. As a result, we performed EMS mutagenesis using a transgenic line with a minimal promoter of VIN3 fused to the GUS reporter gene, and isolated a mutant, hyperactivation of VIN3 1 (hov1), which showed increased GUS signal and endogenous VIN3 transcript levels. Using positional cloning combined with whole-genome resequencing, we found that hov1 carries a nonsense mutation, leading to a premature stop codon on the HEAT SHOCK TRANSCRIPTION FACTOR B2b (HsfB2b), which encodes a repressive heat shock transcription factor. HsfB2b directly binds to the VIN3 promoter, and HsfB2b overexpression leads to reduced acceleration of flowering after vernalization. Collectively, our findings reveal a novel fine-tuning mechanism to regulate VIN3 for proper vernalization response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Temperatura Baixa , Proteínas de Ligação a DNA/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Domínio MADS/genética , Complexo Repressor Polycomb 2/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Front Plant Sci ; 13: 964931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035698

RESUMO

Proper timing of flowering, a phase transition from vegetative to reproductive development, is crucial for plant fitness. The floral repressor FLOWERING LOCUS C (FLC) is the major determinant of flowering in Arabidopsis thaliana. In rapid-cycling A. thaliana accessions, which bloom rapidly, FLC is constitutively repressed by autonomous pathway (AP) genes, regardless of photoperiod. Diverse AP genes have been identified over the past two decades, and most of them repress FLC through histone modifications. However, the detailed mechanism underlying such modifications remains unclear. Several recent studies have revealed novel mechanisms to control FLC repression in concert with histone modifications. This review summarizes the latest advances in understanding the novel mechanisms by which AP proteins regulate FLC repression, including changes in chromatin architecture, RNA polymerase pausing, and liquid-liquid phase separation- and ncRNA-mediated gene silencing. Furthermore, we discuss how each mechanism is coupled with histone modifications in FLC chromatin.

20.
J Exp Bot ; 61(9): 2247-54, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20413527

RESUMO

SOC1, encoding a MADS box transcription factor, integrates multiple flowering signals derived from photoperiod, temperature, hormone, and age-related signals. SOC1 is regulated by two antagonistic flowering regulators, CONSTANS (CO) and FLOWERING LOCUS C (FLC), which act as floral activator and repressor, respectively. CO activates SOC1 mainly through FT but FLC represses SOC1 by direct binding to the promoter. SOC1 is also activated by an age-dependent mechanism in which SPL9 and microRNA156 are involved. When SOC1 is induced at the shoot apex, SOC1 together with AGL24 directly activates LEAFY (LFY), a floral meristem identity gene. APETALA1 (AP1), activated mainly by FT, is also necessary to establish and maintain flower meristem identity. When LFY and AP1 are established, flower development occurs at the anlagen of shoot apical meristem according to the ABC model. During early flower development, AP1 activates the A function and represses three redundantly functioning flowering time genes, SOC1, AGL24, and SVP to prevent floral reversion. During late flower development, such repression is also necessary to activate SEPALATA3 (SEP3) which is a coactivator of B and C function genes with LFY, otherwise SEP3 is suppressed by SOC1, AGL24, and SVP. Therefore, SOC1 is necessary to prevent premature differentiation of the floral meristem.


Assuntos
Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA