Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7905): 337-342, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355021

RESUMO

Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.


Assuntos
Dermatite Atópica , PPAR gama , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Obesidade/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Medicina de Precisão , Análise de Sequência de RNA , Células Th2/metabolismo
2.
Mol Cell ; 80(4): 592-606.e8, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33159855

RESUMO

Despite its outstanding clinical success, immune checkpoint blockade remains ineffective in many patients. Accordingly, combination therapy capable of achieving greater antitumor immunity is urgently required. Here, we report that limiting glutamine metabolism in cancer cells bolsters the effectiveness of anti-programmed death ligand-1 (PD-L1) antibody. Inhibition of glutamine utilization increased PD-L1 levels in cancer cells, thereby inactivating co-cultured T cells. Under glutamine-limited conditions, reduced cellular GSH levels caused an upregulation of PD-L1 expression by impairing SERCA activity, which activates the calcium/NF-κB signaling cascade. Consequently, in tumors grown in immunocompetent mice, inhibition of glutamine metabolism decreased the antitumor activity of T cells. In combination with anti-PD-L1, however, glutamine depletion strongly promoted the antitumor efficacy of T cells in vitro and in vivo due to simultaneous increases in Fas/CD95 levels. Our results demonstrate the relevance of cancer glutamine metabolism to antitumor immunity and suggest that co-targeting of glutamine metabolism and PD-L1 represents a promising therapeutic approach.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Neoplasias/imunologia , Neoplasias/prevenção & controle , Linfócitos T/imunologia , Idoso , Animais , Apoptose , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Proc Natl Acad Sci U S A ; 120(20): e2219644120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155882

RESUMO

Emerging evidence suggest that transcription factors play multiple roles in the development of pancreatitis, a necroinflammatory condition lacking specific therapy. Estrogen-related receptor γ (ERRγ), a pleiotropic transcription factor, has been reported to play a vital role in pancreatic acinar cell (PAC) homeostasis. However, the role of ERRγ in PAC dysfunction remains hitherto unknown. Here, we demonstrated in both mice models and human cohorts that pancreatitis is associated with an increase in ERRγ gene expression via activation of STAT3. Acinar-specific ERRγ haploinsufficiency or pharmacological inhibition of ERRγ significantly impaired the progression of pancreatitis both in vitro and in vivo. Using systematic transcriptomic analysis, we identified that voltage-dependent anion channel 1 (VDAC1) acts as a molecular mediator of ERRγ. Mechanistically, we showed that induction of ERRγ in cultured acinar cells and mouse pancreata enhanced VDAC1 expression by directly binding to specific site of the Vdac1 gene promoter and resulted in VDAC1 oligomerization. Notably, VDAC1, whose expression and oligomerization were dependent on ERRγ, modulates mitochondrial Ca2+ and ROS levels. Inhibition of the ERRγ-VDAC1 axis could alleviate mitochondrial Ca2+ accumulation, ROS formation and inhibit progression of pancreatitis. Using two different mouse models of pancreatitis, we showed that pharmacological blockade of ERRγ-VDAC1 pathway has therapeutic benefits in mitigating progression of pancreatitis. Likewise, using PRSS1R122H-Tg mice to mimic human hereditary pancreatitis, we demonstrated that ERRγ inhibitor also alleviated pancreatitis. Our findings highlight the importance of ERRγ in pancreatitis progression and suggests its therapeutic intervention for prevention and treatment of pancreatitis.


Assuntos
Pancreatite Crônica , Canal de Ânion 1 Dependente de Voltagem , Animais , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Canal de Ânion 1 Dependente de Voltagem/metabolismo
4.
Acc Chem Res ; 57(13): 1803-1814, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38859612

RESUMO

ConspectusNeurotechnology has seen dramatic improvements in the last three decades. The major focus in the field has been to design electrical communication platforms with high spatial resolution, stability, and translatability for understanding and affecting neural pathways. The deployment of nanomaterials in bioelectronics has enhanced the capabilities of conventional approaches employing microelectrode arrays (MEAs) for electrical interfaces, allowing the construction of miniaturized, high-performance neuroelectronics (Garg, R.; et al. ACS Appl. Nano Mater. 2023, 6, 8495). While these advancements in the electrical neuronal interface have revolutionized neurotechnology both in scale and breadth, an in-depth understanding of neurons' interactions is challenging due to the complexity of the environments where the cells and tissues are laid. The activity of large, three-dimensional neuronal systems has proven difficult to accurately monitor and modulate, and chemical cell-cell communication is often completely neglected. Recent breakthroughs in nanotechnology have provided opportunities to use new nonelectric modes of communication with neurons and to significantly enhance electrical signal interface capabilities. The enhanced electrochemical activity and optical activity of nanomaterials owing to their nonbulk electronic properties and surface nanostructuring have seen extensive utilization. Nanomaterials' enhanced optical activity enables remote neural state modulation, whereas the defect-rich surfaces provide an enormous number of available electrocatalytic sites for neurochemical detection and electrochemical modulation of cell microenvironments through Faradaic processes. Such unique properties can allow multimodal neural interrogation toward generating closed-loop interfaces with access to more complete neural state descriptors. In this Account, we will review recent advances and our efforts spearheaded toward utilizing nanostructured electrodes for enhanced bidirectional interfaces with neurons, the application of unique hybrid nanomaterials for remote nongenetic optical stimulation of neurons, tunable nanomaterials for highly sensitive and selective neurotransmitter detection, and the utilization of nanomaterials as electrocatalysts toward electrochemically modulating cellular activity. We highlight applications of these technologies across cell types through nanomaterial engineering with a focus on multifunctional graphene nanostructures applied though several modes of neural modulation but also an exploration of broad material classes for maximizing the potency of closed-loop bioelectronics.


Assuntos
Nanoestruturas , Neurônios , Nanoestruturas/química , Neurônios/fisiologia , Humanos , Microeletrodos , Animais , Nanotecnologia/métodos
5.
Proc Natl Acad Sci U S A ; 119(34): e2120157119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969774

RESUMO

Dynamic regulation of mitochondrial morphology provides cells with the flexibility required to adapt and respond to electron transport chain (ETC) toxins and mitochondrial DNA-linked disease mutations, yet the mechanisms underpinning the regulation of mitochondrial dynamics machinery by these stimuli is poorly understood. Here, we show that pyruvate dehydrogenase kinase 4 (PDK4) is genetically required for cells to undergo rapid mitochondrial fragmentation when challenged with ETC toxins. Moreover, PDK4 overexpression was sufficient to promote mitochondrial fission even in the absence of mitochondrial stress. Importantly, we observed that the PDK4-mediated regulation of mitochondrial fission was independent of its canonical function, i.e., inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Phosphoproteomic screen for PDK4 substrates, followed by nonphosphorylatable and phosphomimetic mutations of the PDK4 site revealed cytoplasmic GTPase, Septin 2 (SEPT2), as the key effector molecule that acts as a receptor for DRP1 in the outer mitochondrial membrane to promote mitochondrial fission. Conversely, inhibition of the PDK4-SEPT2 axis could restore the balance in mitochondrial dynamics and reinvigorates cellular respiration in mitochondrial fusion factor, mitofusin 2-deficient cells. Furthermore, PDK4-mediated mitochondrial reshaping limits mitochondrial bioenergetics and supports cancer cell growth. Our results identify the PDK4-SEPT2-DRP1 axis as a regulator of mitochondrial function at the interface between cellular bioenergetics and mitochondrial dynamics.


Assuntos
Dinâmica Mitocondrial , Proteínas Quinases , Respiração Celular/genética , GTP Fosfo-Hidrolases/genética , Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Quinases/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853949

RESUMO

Fibroblast growth factor 23 (FGF23), a hormone generally derived from bone, is important in phosphate and vitamin D homeostasis. In acute kidney injury (AKI) patients, high-circulating FGF23 levels are associated with disease progression and mortality. However, the organ and cell type of FGF23 production in AKI and the molecular mechanism of its excessive production are still unidentified. For insight, we investigated folic acid (FA)-induced AKI in mice. Interestingly, simultaneous with FGF23, orphan nuclear receptor ERR-γ expression is increased in the liver of FA-treated mice, and ectopic overexpression of ERR-γ was sufficient to induce hepatic FGF23 production. In patients and in mice, AKI is accompanied by up-regulated systemic IL-6, which was previously identified as an upstream regulator of ERR-γ expression in the liver. Administration of IL-6 neutralizing antibody to FA-treated mice or of recombinant IL-6 to healthy mice confirms IL-6 as an upstream regulator of hepatic ERR-γ-mediated FGF23 production. A significant (P < 0.001) interconnection between high IL-6 and FGF23 levels as a predictor of AKI in patients that underwent cardiac surgery was also found, suggesting the clinical relevance of the finding. Finally, liver-specific depletion of ERR-γ or treatment with an inverse ERR-γ agonist decreased hepatic FGF23 expression and plasma FGF23 levels in mice with FA-induced AKI. Thus, inverse agonist of ERR-γ may represent a therapeutic strategy to reduce adverse plasma FGF23 levels in AKI.


Assuntos
Injúria Renal Aguda/fisiopatologia , Fator de Crescimento de Fibroblastos 23/metabolismo , Receptores de Estrogênio/metabolismo , Injúria Renal Aguda/metabolismo , Animais , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23/genética , Ácido Fólico/efeitos adversos , Ácido Fólico/farmacologia , Interleucina-6/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/metabolismo , Receptores de Estrogênio/genética , Ativação Transcricional
7.
Mol Pharmacol ; 104(5): 214-229, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595967

RESUMO

Nonalcoholic steatohepatitis (NASH) is a severe liver metabolic disorder, however, there are still no effective and safe drugs for its treatment. Previous clinical trials used various therapeutic approaches to target individual pathologic mechanisms, but these approaches were unsuccessful because of the complex pathologic causes of NASH. Combinatory therapy in which two or more drugs are administered simultaneously to patients with NASH, however, carries the risk of side effects associated with each individual drug. To solve this problem, we identified gossypetin as an effective dual-targeting agent that activates AMP-activated protein kinase (AMPK) and decreases oxidative stress. Administration of gossypetin decreased hepatic steatosis, lobular inflammation and liver fibrosis in the liver tissue of mice with choline-deficient high-fat diet and methionine-choline deficient diet (MCD) diet-induced NASH. Gossypetin functioned directly as an antioxidant agent, decreasing hydrogen peroxide and palmitate-induced oxidative stress in the AML12 cells and liver tissue of MCD diet-fed mice without regulating the antioxidant response factors. In addition, gossypetin acted as a novel AMPK activator by binding to the allosteric drug and metabolite site, which stabilizes the activated structure of AMPK. Our findings demonstrate that gossypetin has the potential to serve as a novel therapeutic agent for nonalcoholic fatty liver disease /NASH. SIGNIFICANCE STATEMENT: This study demonstrates that gossypetin has preventive effect to progression of nonalcoholic steatohepatitis (NASH) as a novel AMP-activated protein kinase (AMPK) activator and antioxidants. Our findings indicate that simultaneous activation of AMPK and oxidative stress using gossypetin has the potential to serve as a novel therapeutic approach for nonalcoholic fatty liver disease /NASH patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Metionina/metabolismo , Metionina/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
8.
Kidney Int ; 104(4): 724-739, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399974

RESUMO

Ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury (AKI), is still without effective therapies. Succinate accumulation during ischemia followed by its oxidation during reperfusion leads to excessive reactive oxygen species (ROS) and severe kidney damage. Consequently, the targeting of succinate accumulation may represent a rational approach to the prevention of IR-induced kidney injury. Since ROS are generated primarily in mitochondria, which are abundant in the proximal tubule of the kidney, we explored the role of pyruvate dehydrogenase kinase 4 (PDK4), a mitochondrial enzyme, in IR-induced kidney injury using proximal tubule cell-specific Pdk4 knockout (Pdk4ptKO) mice. Knockout or pharmacological inhibition of PDK4 ameliorated IR-induced kidney damage. Succinate accumulation during ischemia, which is responsible for mitochondrial ROS production during reperfusion, was reduced by PDK4 inhibition. PDK4 deficiency established conditions prior to ischemia resulting in less succinate accumulation, possibly because of a reduction in electron flow reversal in complex II, which provides electrons for the reduction of fumarate to succinate by succinate dehydrogenase during ischemia. The administration of dimethyl succinate, a cell-permeable form of succinate, attenuated the beneficial effects of PDK4 deficiency, suggesting that the kidney-protective effect is succinate-dependent. Finally, genetic or pharmacological inhibition of PDK4 prevented IR-induced mitochondrial damage in mice and normalized mitochondrial function in an in vitro model of IR injury. Thus, inhibition of PDK4 represents a novel means of preventing IR-induced kidney injury, and involves the inhibition of ROS-induced kidney toxicity through reduction in succinate accumulation and mitochondrial dysfunction.


Assuntos
Traumatismo por Reperfusão , Ácido Succínico , Camundongos , Animais , Ácido Succínico/farmacologia , Espécies Reativas de Oxigênio , Camundongos Knockout , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Isquemia/tratamento farmacológico , Rim , Mitocôndrias , Reperfusão
9.
Gastroenterology ; 163(1): 239-256, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35461826

RESUMO

BACKGROUND & AIMS: Mitochondrial dysfunction disrupts the synthesis and secretion of digestive enzymes in pancreatic acinar cells and plays a primary role in the etiology of exocrine pancreas disorders. However, the transcriptional mechanisms that regulate mitochondrial function to support acinar cell physiology are poorly understood. Here, we aim to elucidate the function of estrogen-related receptor γ (ERRγ) in pancreatic acinar cell mitochondrial homeostasis and energy production. METHODS: Two models of ERRγ inhibition, GSK5182-treated wild-type mice and ERRγ conditional knock-out (cKO) mice, were established to investigate ERRγ function in the exocrine pancreas. To identify the functional role of ERRγ in pancreatic acinar cells, we performed histologic and transcriptome analysis with the pancreas isolated from ERRγ cKO mice. To determine the relevance of these findings for human disease, we analyzed transcriptome data from multiple independent human cohorts and conducted genetic association studies for ESRRG variants in 2 distinct human pancreatitis cohorts. RESULTS: Blocking ERRγ function in mice by genetic deletion or inverse agonist treatment results in striking pancreatitis-like phenotypes accompanied by inflammation, fibrosis, and cell death. Mechanistically, loss of ERRγ in primary acini abrogates messenger RNA expression and protein levels of mitochondrial oxidative phosphorylation complex genes, resulting in defective acinar cell energetics. Mitochondrial dysfunction due to ERRγ deletion further triggers autophagy dysfunction, endoplasmic reticulum stress, and production of reactive oxygen species, ultimately leading to cell death. Interestingly, ERRγ-deficient acinar cells that escape cell death acquire ductal cell characteristics, indicating a role for ERRγ in acinar-to-ductal metaplasia. Consistent with our findings in ERRγ cKO mice, ERRγ expression was significantly reduced in patients with chronic pancreatitis compared with normal subjects. Furthermore, candidate locus region genetic association studies revealed multiple single nucleotide variants for ERRγ that are associated with chronic pancreatitis. CONCLUSIONS: Collectively, our findings highlight an essential role for ERRγ in maintaining the transcriptional program that supports acinar cell mitochondrial function and organellar homeostasis and provide a novel molecular link between ERRγ and exocrine pancreas disorders.


Assuntos
Pâncreas Exócrino , Pancreatite Crônica , Células Acinares/patologia , Animais , Estrogênios/metabolismo , Humanos , Camundongos , Camundongos Knockout , Pâncreas/patologia , Pâncreas Exócrino/metabolismo , Pancreatite Crônica/patologia
10.
Small ; 19(11): e2207015, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642828

RESUMO

Thermal interfaces are vital for effective thermal management in modern electronics, especially in the emerging fields of flexible electronics and soft robotics that impose requirements for interface materials to be soft and flexible in addition to having high thermal performance. Here, a novel sandwich-structured thermal interface material (TIM) is developed that simultaneously possesses record-low thermal resistance and high flexibility. Frequency-domain thermoreflectance (FDTR) is employed to investigate the overall thermal performance of the sandwich structure. As the core of this sandwich, a vertically aligned copper nanowire (CuNW) array preserves its high intrinsic thermal conductivity, which is further enhanced by 60% via a thick 3D graphene (3DG) coating. The thin copper layers on the top and bottom play the critical roles in protecting the nanowires during device assembly. Through the bottom-up fabrication process, excellent contacts between the graphene-coated CuNWs and the top/bottom layer are realized, leading to minimal interfacial resistance. In total, the thermal resistance of the sandwich is determined as low as ~0.23 mm2  K W-1 . This work investigates a new generation of flexible thermal interface materials with an ultralow thermal resistance, which therefore renders the great promise for advanced thermal management in a wide variety of electronics.

11.
Small ; 19(37): e2300527, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226374

RESUMO

In this study, extracellular vesicles (EVs) are reimagined as more than just a cellular waste disposal system and are repurposed for cancer immunotherapy. Potent oncolytic EVs (bRSVF-EVs) loaded with misfolded proteins (MPs) are engineered, which are typically considered cellular debris. By impairing lysosomal function using bafilomycin A1 and expressing the respiratory syncytial virus F protein, a viral fusogen, MPs are successfully loaded into the EVs expressing RSVF. bRSVF-EVs preferentially transplant a xenogeneic antigen onto cancer cell membranes in a nucleolin-dependent manner, triggering an innate immune response. Furthermore, bRSVF-EV-mediated direct delivery of MPs into the cancer cell cytoplasm initiates endoplasmic reticulum stress and immunogenic cell death (ICD). This mechanism of action leads to substantial antitumor immune responses in murine tumor models. Importantly, when combined with PD-1 blockade, bRSVF-EV treatment elicits robust antitumor immunity, resulting in prolonged survival and complete remission in some cases. Overall, the findings demonstrate that utilizing tumor-targeting oncolytic EVs for direct cytoplasmic delivery of MPs to induce ICD in cancer cells represents a promising approach for enhancing durable antitumor immunity.


Assuntos
Vesículas Extracelulares , Neoplasias , Camundongos , Animais , Vesículas Extracelulares/metabolismo , Neoplasias/patologia , Citoplasma , Citosol , Imunoterapia/métodos
12.
Bioorg Med Chem Lett ; 94: 129461, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652099

RESUMO

Tryptophan hydroxylase 1 (TPH1) has emerged as a target for the treatment of metabolic diseases including obesity and fatty liver disease. A series of xanthine derivatives were synthesized and evaluated for their TPH1 inhibition. Among the synthesized compounds, compound 40 showed good in vitro activity and liver microsomal stability. Docking studies revealed that compound 40 showed better binding to TPH1 via key intermolecular interactions involving the xanthine scaffold, imidazo-thiazolyl ring, and hydroxyl-containing phenacyl moiety. In addition, compound 40 effectively suppressed the adipocyte differentiation of 3 T3-L1 cells.


Assuntos
Alcaloides , Hepatopatia Gordurosa não Alcoólica , Humanos , Diuréticos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Triptofano Hidroxilase/antagonistas & inibidores , Xantinas/química , Xantinas/farmacologia
13.
Proc Natl Acad Sci U S A ; 117(22): 12143-12154, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424107

RESUMO

Proximity labeling catalyzed by promiscuous enzymes, such as TurboID, have enabled the proteomic analysis of subcellular regions difficult or impossible to access by conventional fractionation-based approaches. Yet some cellular regions, such as organelle contact sites, remain out of reach for current PL methods. To address this limitation, we split the enzyme TurboID into two inactive fragments that recombine when driven together by a protein-protein interaction or membrane-membrane apposition. At endoplasmic reticulum-mitochondria contact sites, reconstituted TurboID catalyzed spatially restricted biotinylation, enabling the enrichment and identification of >100 endogenous proteins, including many not previously linked to endoplasmic reticulum-mitochondria contacts. We validated eight candidates by biochemical fractionation and overexpression imaging. Overall, split-TurboID is a versatile tool for conditional and spatially specific proximity labeling in cells.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteoma/análise , Biotinilação , Células HEK293 , Humanos , Proteoma/metabolismo , Coloração e Rotulagem
14.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613556

RESUMO

The orphan nuclear receptor, estrogen-related receptor γ (ERRγ) is a constitutively active transcription factor involved in mitochondrial metabolism and energy homeostasis. GSK5182, a specific inverse agonist of ERRγ that inhibits transcriptional activity, induces a conformational change in ERRγ, resulting in a loss of coactivator binding. However, the molecular mechanism underlying the stabilization of the ERRγ protein by its inverse agonist remains largely unknown. In this study, we found that GSK5182 inhibited ubiquitination of ERRγ, thereby stabilizing the ERRγ protein, using cell-based assays and confocal image analysis. Y326 of ERRγ was essential for stabilization by GSK5182, as ligand-induced stabilization of ERRγ was not observed with the ERRγ-Y326A mutant. GSK5182 suppressed ubiquitination of ERRγ by the E3 ligase Parkin and subsequent degradation. The inhibitory activity of GSK5182 was strong even when the ERRγ protein level was elevated, as ERRγ bound to GSK5182 recruited a corepressor, small heterodimer partner-interacting leucine zipper (SMILE), through the activation function 2 (AF-2) domain, without alteration of the nuclear localization or DNA-binding ability of ERRγ. In addition, the AF-2 domain of ERRγ was critical for the regulation of protein stability. Mutants in the AF-2 domain were present at higher levels than the wild type in the absence of GSK5182. Furthermore, the ERRγ-L449A/L451A mutant was no longer susceptible to GSK5182. Thus, the AF-2 domain of ERRγ is responsible for the regulation of transcriptional activity and protein stability by GSK5182. These findings suggest that GSK5182 regulates ERRγ by a unique molecular mechanism, increasing the inactive form of ERRγ via inhibition of ubiquitination.


Assuntos
Agonismo Inverso de Drogas , Receptores Nucleares Órfãos , Furilfuramida , Ubiquitinação , Estabilidade Proteica
15.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684355

RESUMO

Serotonin (5-hydroxytryptophan) is a hormone that regulates emotions in the central nervous system. However, serotonin in the peripheral system is associated with obesity and fatty liver disease. Because serotonin cannot cross the blood-brain barrier (BBB), we focused on identifying new tryptophan hydroxylase type I (TPH1) inhibitors that act only in peripheral tissues for treating obesity and fatty liver disease without affecting the central nervous system. Structural optimization inspired by para-chlorophenylalanine (pCPA) resulted in the identification of a series of oxyphenylalanine and heterocyclic phenylalanine derivatives as TPH1 inhibitors. Among these compounds, compound 18i with an IC50 value of 37 nM was the most active in vitro. Additionally, compound 18i showed good liver microsomal stability and did not significantly inhibit CYP and Herg. Furthermore, this TPH1 inhibitor was able to actively interact with the peripheral system without penetrating the BBB. Compound 18i and its prodrug reduced body weight gain in mammals and decreased in vivo fat accumulation.


Assuntos
Hepatopatias , Triptofano Hidroxilase , Animais , Barreira Hematoencefálica/metabolismo , Mamíferos/metabolismo , Obesidade/tratamento farmacológico , Serotonina , Triptofano Hidroxilase/metabolismo
16.
Glia ; 69(4): 971-996, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33251681

RESUMO

Diabetic peripheral neuropathy (DPN) is a common complication of uncontrolled diabetes. The pathogenesis of DPN is associated with chronic inflammation in dorsal root ganglion (DRG), eventually causing structural and functional changes. Studies on DPN have primarily focused on neuronal component, and there is limited knowledge about the role of satellite glial cells (SGCs), although they completely enclose neuronal soma in DRG. Lipocalin-2 (LCN2) is a pro-inflammatory acute-phase protein found in high levels in diverse neuroinflammatory and metabolic disorders. In diabetic DRG, the expression of LCN2 was increased exclusively in the SGCs. This upregulation of LCN2 in SGCs correlated with increased inflammatory responses in DRG and sciatic nerve. Furthermore, diabetes-induced inflammation and morphological changes in DRG, as well as sciatic nerve, were attenuated in Lcn2 knockout (KO) mice. Lcn2 gene ablation also ameliorated neuropathy phenotype as determined by nerve conduction velocity and intraepidermal nerve fiber density. Mechanistically, studies using specific gene KO mice, adenovirus-mediated gene overexpression strategy, and primary cultures of DRG SGCs and neurons have demonstrated that LCN2 enhances the expression of mitochondrial gate-keeping regulator pyruvate dehydrogenase kinase-2 (PDK2) through PPARß/δ, thereby inhibiting pyruvate dehydrogenase activity and increasing production of glycolytic end product lactic acid in DRG SGCs and neurons of diabetic mice. Collectively, our findings reveal a crucial role of glial LCN2-PPARß/δ-PDK2-lactic acid axis in progression of DPN. Our results establish a link between pro-inflammatory LCN2 and glycolytic PDK2 in DRG SGCs and neurons and propose a novel glia-based mechanism and drug target for therapy of DPN. MAIN POINTS: Diabetes upregulates LCN2 in satellite glia, which in turn increases pyruvate dehydrogenase kinase-2 (PDK2) expression and lactic acid production in dorsal root ganglia (DRG). Glial LCN2-PDK2-lactic acid axis in DRG plays a crucial role in the pathogenesis of diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Lipocalina-2 , PPAR beta , Animais , Camundongos , Gânglios Espinais , Inflamação , Ácido Láctico , Lipocalina-2/genética , Camundongos Knockout , Neuroglia , Piruvato Desidrogenase Quinase de Transferência de Acetil
17.
Kidney Int ; 99(1): 117-133, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853632

RESUMO

Cell therapy using genome-engineered stem cells has emerged as a novel strategy for the treatment of kidney diseases. By exploiting genome editing technology, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) secreting an angiogenic factors or an anti-inflammatory factor were generated for therapeutic application in acute kidney injury. Junction polymerase chain reaction analysis verified zinc finger nucleases-assisted integration of the desired gene into the hUC-MSCs. Flow cytometry and differentiation assays indicated that genome editing did not affect the differentiation potential of these mesenchymal stem cells. Protein measurement in conditioned media with the use of ELISA and immunoblotting revealed the production and secretion of each integrated gene product. For cell therapy in the bilateral ischemia-reperfusion mouse model of acute kidney injury, our innovative scaffold-free cell sheets were established using a non-biodegradable temperature-responsive polymer. One of each type of scaffold-free cell sheets of either the angiogenic factor vascular endothelial grown factor or angiopoietin-1, or the anti-inflammatory factor erythropoietin, or α-melanocyte-stimulating hormone-secreting hUC-MSCs was applied to the decapsulated kidney surface. This resulted in significant amelioration of kidney dysfunction in the mice with acute kidney injury, effects that were superior to intravenous administration of the same genome-engineered hUC-MSCs. Thus, our scaffold-free cell sheets of genome-engineered mesenchymal stem cells provides therapeutic effects by inhibiting acute kidney injury via angiogenesis or anti-inflammation.


Assuntos
Injúria Renal Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Injúria Renal Aguda/genética , Injúria Renal Aguda/terapia , Animais , Diferenciação Celular , Camundongos , Cordão Umbilical
18.
EMBO Rep ; 20(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988000

RESUMO

Oncogenic signals contribute to enhanced glycolysis and mTORC1 activity, leading to rapid cell proliferation in cancer. Regulation of glycolysis and mTORC1 by PI3K/Akt signaling is well established, but how KRAS-induced MEK signaling regulates these pathways remains poorly understood. Here, we report a role for MEK-driven lactate production in mTORC1 activation in KRAS-activated cells. KRAS/MEK-induced upregulation of the chicken ovalbumin upstream promoter transcriptional factor II (COUP-TFII) increases the expression of lactate dehydrogenase A (LDHA), resulting in lactate production and mTORC1 activation. Further, lactate inhibits the interaction of TSC2 and Rheb, leading to the cellular activation of mTORC1 irrespective of growth factor stimulation. These findings suggest that COUP-TFII is a novel oncogenic mediator, connecting KRAS signaling and glycolysis, and leading to mTORC1 activation and cellular growth.


Assuntos
Fator II de Transcrição COUP/metabolismo , Ácido Láctico/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Fator II de Transcrição COUP/genética , Linhagem Celular Tumoral , Expressão Gênica , Técnicas de Silenciamento de Genes , Glicólise , Humanos , Modelos Biológicos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
19.
Arch Toxicol ; 95(9): 3071-3084, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34191077

RESUMO

Acute liver injury results from the complex interactions of various pathological processes. The TGF-ß superfamily plays a crucial role in orchestrating fibrogenic response. In contrast to TGF-ß1, a role of TGF-ß2 in hepatic fibrogenic response has not been fully investigated. In this study, we showed that TGF-ß2 gene expression and secretion are induced in the liver of CCl4 (1 ml/kg)-treated WT mice. Studies with hepatocyte specific ERRγ knockout mice or treatment with an ERRγ-specific inverse agonist, GSK5182 (40 mg/kg), indicated that CCl4-induced hepatic TGF-ß2 production is ERRγ dependent. Moreover, IL6 was found as upstream signal to induce hepatic ERRγ and TGF-ß2 gene expression in CCl4-mediated acute toxicity model. Over-expression of ERRγ was sufficient to induce hepatic TGF-ß2 expression, whereas ERRγ depletion markedly reduces IL6-induced TGF-ß2 gene expression and secretion in vitro and in vivo. Promoter assays showed that ERRγ directly binds to an ERR response element in the TGF-ß2 promoter to induce TGF-ß2 transcription. Finally, GSK5182 diminished CCl4-induced fibrogenic response through inhibition of ERRγ-mediated TGF-ß2 production. Taken together, these results firstly demonstrate that ERRγ can regulate the TGF-ß2-mediated fibrogenic response in a mouse model of CC14-induced acute liver injury.


Assuntos
Hepatopatias/fisiopatologia , Receptores de Estrogênio/genética , Tamoxifeno/análogos & derivados , Fator de Crescimento Transformador beta2/genética , Animais , Tetracloreto de Carbono , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Hepatopatias/tratamento farmacológico , Hepatopatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Estrogênio/efeitos dos fármacos , Tamoxifeno/farmacologia
20.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065602

RESUMO

Resistance to anticancer therapeutics occurs in virtually every type of cancer and becomes a major difficulty in cancer treatment. Although 5-fluorouracil (5FU) is the first-line choice of anticancer therapy for gastric cancer, its effectiveness is limited owing to drug resistance. Recently, altered cancer metabolism, including the Warburg effect, a preference for glycolysis rather than oxidative phosphorylation for energy production, has been accepted as a pivotal mechanism regulating resistance to chemotherapy. Thus, we investigated the detailed mechanism and possible usefulness of antiglycolytic agents in ameliorating 5FU resistance using established gastric cancer cell lines, SNU620 and SNU620/5FU. SNU620/5FU, a gastric cancer cell harboring resistance to 5FU, showed much higher lactate production and expression of glycolysis-related enzymes, such as lactate dehydrogenase A (LDHA), than those of the parent SNU620 cells. To limit glycolysis, we examined catechin and its derivatives, which are known anti-inflammatory and anticancer natural products because epigallocatechin gallate has been previously reported as a suppressor of LDHA expression. Catechin, the simplest compound among them, had the highest inhibitory effect on lactate production and LDHA activity. In addition, the combination of 5FU and catechin showed additional cytotoxicity and induced reactive oxygen species (ROS)-mediated apoptosis in SNU620/5FU cells. Thus, based on these results, we suggest catechin as a candidate for the development of a novel adjuvant drug that reduces chemoresistance to 5FU by restricting LDHA.


Assuntos
Catequina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Lactato Desidrogenase 5/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Linhagem Celular Tumoral , Glicólise/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estômago/efeitos dos fármacos , Neoplasias Gástricas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA