Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nature ; 584(7820): 262-267, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32512578

RESUMO

Governments around the world are responding to the coronavirus disease 2019 (COVID-19) pandemic1, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with unprecedented policies designed to slow the growth rate of infections. Many policies, such as closing schools and restricting populations to their homes, impose large and visible costs on society; however, their benefits cannot be directly observed and are currently understood only through process-based simulations2-4. Here we compile data on 1,700 local, regional and national non-pharmaceutical interventions that were deployed in the ongoing pandemic across localities in China, South Korea, Italy, Iran, France and the United States. We then apply reduced-form econometric methods, commonly used to measure the effect of policies on economic growth5,6, to empirically evaluate the effect that these anti-contagion policies have had on the growth rate of infections. In the absence of policy actions, we estimate that early infections of COVID-19 exhibit exponential growth rates of approximately 38% per day. We find that anti-contagion policies have significantly and substantially slowed this growth. Some policies have different effects on different populations, but we obtain consistent evidence that the policy packages that were deployed to reduce the rate of transmission achieved large, beneficial and measurable health outcomes. We estimate that across these 6 countries, interventions prevented or delayed on the order of 61 million confirmed cases, corresponding to averting approximately 495 million total infections. These findings may help to inform decisions regarding whether or when these policies should be deployed, intensified or lifted, and they can support policy-making in the more than 180 other countries in which COVID-19 has been reported7.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Quarentena/métodos , Número Básico de Reprodução , COVID-19 , China/epidemiologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/transmissão , França/epidemiologia , Humanos , Irã (Geográfico)/epidemiologia , Itália/epidemiologia , Pneumonia Viral/mortalidade , Pneumonia Viral/transmissão , República da Coreia/epidemiologia , Instituições Acadêmicas/organização & administração , Isolamento Social , Estados Unidos/epidemiologia
3.
Nucleic Acids Res ; 52(10): 5792-5803, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38661210

RESUMO

Nucleotide repeat expansion disorders, a group of genetic diseases characterized by the expansion of specific DNA sequences, pose significant challenges to treatment and therapy development. Here, we present a precise and programmable method called prime editor-mediated correction of nucleotide repeat expansion (PE-CORE) for correcting pathogenic nucleotide repeat expansion. PE-CORE leverages a prime editor and paired pegRNAs to achieve targeted correction of repeat sequences. We demonstrate the effectiveness of PE-CORE in HEK293T cells and patient-derived induced pluripotent stem cells (iPSCs). Specifically, we focus on spinal and bulbar muscular atrophy and spinocerebellar ataxia type, two diseases associated with nucleotide repeat expansion. Our results demonstrate the successful correction of pathogenic expansions in iPSCs and subsequent differentiation into motor neurons. Specifically, we detect distinct downshifts in the size of both the mRNA and protein, confirming the functional correction of the iPSC-derived motor neurons. These findings highlight PE-CORE as a precision tool for addressing the intricate challenges of nucleotide repeat expansion disorders, paving the way for targeted therapies and potential clinical applications.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Edição de Genes/métodos , Células HEK293 , Neurônios Motores/metabolismo , Diferenciação Celular/genética , Expansão das Repetições de DNA/genética , Expansão das Repetições de Trinucleotídeos/genética
4.
Nature ; 572(7769): 335-340, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316208

RESUMO

Lamin A/C (LMNA) is one of the most frequently mutated genes associated with dilated cardiomyopathy (DCM). DCM related to mutations in LMNA is a common inherited cardiomyopathy that is associated with systolic dysfunction and cardiac arrhythmias. Here we modelled the LMNA-related DCM in vitro using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Electrophysiological studies showed that the mutant iPSC-CMs displayed aberrant calcium homeostasis that led to arrhythmias at the single-cell level. Mechanistically, we show that the platelet-derived growth factor (PDGF) signalling pathway is activated in mutant iPSC-CMs compared to isogenic control iPSC-CMs. Conversely, pharmacological and molecular inhibition of the PDGF signalling pathway ameliorated the arrhythmic phenotypes of mutant iPSC-CMs in vitro. Taken together, our findings suggest that the activation of the PDGF pathway contributes to the pathogenesis of LMNA-related DCM and point to PDGF receptor-ß (PDGFRB) as a potential therapeutic target.


Assuntos
Cardiomiopatia Dilatada/genética , Lamina Tipo A/genética , Mutação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Haploinsuficiência/genética , Homeostase , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/análise , RNA Mensageiro/genética , Análise de Célula Única
5.
Mol Cell ; 62(3): 443-452, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27151441

RESUMO

S6K1 has been implicated in a number of key metabolic responses, which contribute to obesity. Critical among these is the control of a transcriptional program required for the commitment of mesenchymal stem cells to the adipocytic lineage. However, in contrast to its role in the cytosol, the functions and targets of nuclear S6K1 are unknown. Here, we show that adipogenic stimuli trigger nuclear translocation of S6K1, leading to H2BS36 phosphorylation and recruitment of EZH2 to H3, which mediates H3K27 trimethylation. This blocks Wnt gene expression, inducing the upregulation of PPARγ and Cebpa and driving increased adipogenesis. Consistent with this finding, white adipose tissue from S6K1-deficient mice exhibits no detectable H2BS36 phosphorylation or H3K27 trimethylation, whereas both responses are highly elevated in obese humans or in mice fed a high-fat diet. These findings define an S6K1-dependent mechanism in early adipogenesis, contributing to the promotion of obesity.


Assuntos
Adipócitos/enzimologia , Adipogenia , Tecido Adiposo/enzimologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/metabolismo , Obesidade/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Tecido Adiposo/patologia , Adiposidade , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigênese Genética , Células HeLa , Histonas/genética , Humanos , Masculino , Metilação , Camundongos , Obesidade/genética , Obesidade/patologia , PPAR gama/genética , PPAR gama/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transcrição Gênica , Transfecção , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
6.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000987

RESUMO

This paper introduces the novel design and implementation of a low-power wireless monitoring system designed for nuclear power plants, aiming to enhance safety and operational efficiency. By utilizing advanced signal-processing techniques and energy-efficient technologies, the system supports real-time, continuous monitoring without the need for frequent battery replacements. This addresses the high costs and risks associated with traditional wired monitoring methods. The system focuses on acoustic and ultrasonic analysis, capturing sound using microphones and processing these signals through heterodyne frequency conversion for effective signal management, accommodating low-power consumption through down-conversion. Integrated with edge computing, the system processes data locally at the sensor level, optimizing response times to anomalies and reducing network load. Practical implementation shows significant reductions in maintenance overheads and environmental impact, thereby enhancing the reliability and safety of nuclear power plant operations. The study also sets the groundwork for future integration of sophisticated machine learning algorithms to advance predictive maintenance capabilities in nuclear energy management.

7.
Nano Lett ; 23(15): 6859-6867, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470721

RESUMO

Nanomaterials hybridized with biological components have widespread applications. among many candidates, peptides are attractive in that their peptide sequences can self-assemble with the surface of target materials with high specificity without perturbing the intrinsic properties of nanomaterials. Here, a 1D hybrid nanomaterial was developed through self-assembly of a designed peptide. A hexagonal coiled-coil motif geometrically matched to the diameter of the inorganic nanomaterial was fabricated, whose hydrophobic surface was wrapped along the axis of the hydrophobic core of the coiled coil. Our morphological and spectroscopic analyses revealed rod-shaped, homogeneous peptide-inorganic nanomaterial complexes. Culturing embryonic stem cells on surfaces coated with this peptide-assembled single-chain atomic crystal increased the growth and adhesion of the embryonic stem cells. The hybridized nanomaterial also served as an ECM for brain organoids, accelerating the maturation of neurons. New methods to fabricate hybrid materials through peptide assembly can be applied.


Assuntos
Peptídeos , Células-Tronco Pluripotentes , Peptídeos/farmacologia , Peptídeos/química , Sequência de Aminoácidos , Neurônios , Diferenciação Celular
8.
Biochem Biophys Res Commun ; 594: 101-108, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078109

RESUMO

S6K1 serves as an important signaling regulator of cell proliferation and growth in the mTOR signaling pathway. Excessive activation of the mTOR/S6K1 signaling pathway promotes abnormal cell growth and survival, thereby resulting in tumorigenesis. The roles of S6K1 in protein synthesis and metabolism are well known, but an additional role of S6K1 as a gene transcription regulator has not been much understood. Here, we demonstrated that S6K1 is dynamically distributed in the cytoplasm and nuclei of human cervical cancer cells. S6K1 nuclear localization was serum dependent and serum deprivation or rapamycin treatment inhibited S6K1 Thr389 phosphorylation and, thereby, S6K1 was retained in the cytoplasm. Furthermore, we found that endogenous S6K1 interacted with CREB in the cervical cancer cells. Additionally, S6K1 upregulated the CRE-driven promoter luciferase activity. The proto-oncogene c-JUN, which has several CREs, was attenuated in the S6K1 knockdown cervical cancer cells. The binding of CREB/S6K1 to the c-JUN promoter, altered by serum restimulation, was associated with active epigenetic markers. In HeLa cell, 891 promoter regions, to which S6K1 directly binds, were detected. Our findings suggested that active S6K1, which is dynamically translocated into the nucleus, directly binds to chromatin and could play a role in epigenetic mechanisms or transcription factor recruitment.


Assuntos
Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transporte Ativo do Núcleo Celular , Citoplasma/metabolismo , Epigênese Genética , Genoma Humano , Genômica , Células HeLa , Humanos , Fosforilação , Regiões Promotoras Genéticas , Elementos de Resposta , Transdução de Sinais , Transcrição Gênica
9.
J Environ Manage ; 318: 115648, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35949094

RESUMO

The use of indigenous microalgae strains for locally generated domestic (DWW) and livestock wastewater (LWW) treatment is essential for effective and economical applications. Phototrophic microalgae-based biofuel production also contributes to carbon sequestration via CO2 fixation. However, simultaneous consideration of both isolation and screening procedures for locally collected indigenous microalgae strains is not common in the literature. We aimed to isolate indigenous microalgae strains from locally collected samples on coastlines and islands in South Korea. Among five isolated strains, Chlorella sorokiniana JD1-1 was selected for DWW and LWW treatment due to its ability to grow in waste resources. This strain showed a higher specific growth rate in DWW than artificial growth medium (BG-11) with a range of 0.137-0.154 d-1. During cultivation, 96.5%-97.1% of total nitrogen in DWW and 89.2% in LWW was removed. Over 99% of total phosphorus in DWW and 96.4% in LWW was also removed. Finally, isolated C. sorokiniana JD1-1 was able to fix CO2 within a range of 0.0646-0.1043 g CO2 L-1 d-1. These results support the domestic applications of carbon sequestration-efficient microalgae in the waste-to-energy nexus.


Assuntos
Chlorella , Microalgas , Purificação da Água , Animais , Biocombustíveis , Biomassa , Dióxido de Carbono , Sequestro de Carbono , Gado , Águas Residuárias
10.
Molecules ; 26(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34577136

RESUMO

Extensive epigenetic remodeling occurs during the cell fate determination of stem cells. Previously, we discovered that eudesmin regulates lineage commitment of mesenchymal stem cells through the inhibition of signaling molecules. However, the epigenetic modulations upon eudesmin treatment in genomewide level have not been analyzed. Here, we present a transcriptome profiling data showing the enrichment in PRC2 target genes by eudesmin treatment. Furthermore, gene ontology analysis showed that PRC2 target genes downregulated by eudesmin are closely related to Wnt signaling and pluripotency. We selected DKK1 as an eudesmin-dependent potential top hub gene in the Wnt signaling and pluripotency. Through the ChIP-qPCR and RT-qPCR, we found that eudesmin treatment increased the occupancy of PRC2 components, EZH2 and SUZ12, and H3K27me3 level on the promoter region of DKK1, downregulating its transcription level. According to the analysis of GEO profiles, DEGs by depletion of Oct4 showed an opposite pattern to DEGs by eudesmin treatment. Indeed, the expression of pluripotency markers, Oct4, Sox2, and Nanog, was upregulated upon eudesmin treatment. This finding demonstrates that pharmacological modulation of PRC2 dynamics by eudesmin might control Wnt signaling and maintain pluripotency of stem cells.


Assuntos
Furanos , Lignanas , Transcriptoma , Diferenciação Celular , Linhagem Celular , Reposicionamento de Medicamentos , Histonas/metabolismo , Fator 3 de Transcrição de Octâmero , Complexo Repressor Polycomb 2 , Via de Sinalização Wnt
11.
Circulation ; 139(21): 2451-2465, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30866650

RESUMO

BACKGROUND: Molecular targeted chemotherapies have been shown to significantly improve the outcomes of patients who have cancer, but they often cause cardiovascular side effects that limit their use and impair patients' quality of life. Cardiac dysfunction induced by these therapies, especially trastuzumab, shows a distinct cardiotoxic clinical phenotype in comparison to the cardiotoxicity induced by conventional chemotherapies. METHODS: We used the human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) platform to determine the underlying cellular mechanisms in trastuzumab-induced cardiac dysfunction. We assessed the effects of trastuzumab on structural and functional properties in iPSC-CMs from healthy individuals and performed RNA-sequencing to further examine the effect of trastuzumab on iPSC-CMs. We also generated human induced pluripotent stem cells from patients receiving trastuzumab and examined whether patients' phenotype could be recapitulated in vitro by using patient-specific iPSC-CMs. RESULTS: We found that clinically relevant doses of trastuzumab significantly impaired the contractile and calcium-handling properties of iPSC-CMs without inducing cardiomyocyte death or sarcomeric disorganization. RNA-sequencing and subsequent functional analysis revealed mitochondrial dysfunction and altered the cardiac energy metabolism pathway as primary causes of trastuzumab-induced cardiotoxic phenotype. Human iPSC-CMs generated from patients who received trastuzumab and experienced severe cardiac dysfunction were more vulnerable to trastuzumab treatment than iPSC-CMs generated from patients who did not experience cardiac dysfunction following trastuzumab therapy. It is important to note that metabolic modulation with AMP-activated protein kinase activators could avert the adverse effects induced by trastuzumab. CONCLUSIONS: Our results indicate that alterations in cellular metabolic pathways in cardiomyocytes could be a key mechanism underlying the development of cardiac dysfunction following trastuzumab therapy; therefore, targeting the altered metabolism may be a promising therapeutic approach for trastuzumab-induced cardiac dysfunction.


Assuntos
Antineoplásicos Imunológicos/toxicidade , Neoplasias da Mama/tratamento farmacológico , Cardiopatias/induzido quimicamente , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Trastuzumab/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cardiotoxicidade , Estudos de Casos e Controles , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Feminino , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Contração Miocárdica/efeitos dos fármacos , Fenótipo , Fatores de Risco , Transcriptoma/efeitos dos fármacos
12.
Circulation ; 139(6): 799-811, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30586709

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in myosin-binding protein C3 ( MYBPC3) resulting in a premature termination codon (PTC). The underlying mechanisms of how PTC mutations in MYBPC3 lead to the onset and progression of HCM are poorly understood. This study's aim was to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with MYBPC3 PTC mutations by utilizing human isogenic induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS: Isogenic iPSC lines were generated from HCM patients harboring MYBPC3 PTC mutations (p.R943x; p.R1073P_Fsx4) using genome editing. Comprehensive phenotypic and transcriptome analyses were performed in the iPSC-CMs. RESULTS: We observed aberrant calcium handling properties with prolonged decay kinetics and elevated diastolic calcium levels in the absence of structural abnormalities or contracile dysfunction in HCM iPSC-CMs as compared to isogenic controls. The mRNA expression levels of MYBPC3 were significantly reduced in mutant iPSC-CMs, but the protein levels were comparable among isogenic iPSC-CMs, suggesting that haploinsufficiency of MYBPC3 does not contribute to the pathogenesis of HCM in vitro. Furthermore, truncated MYBPC3 peptides were not detected. At the molecular level, the nonsense-mediated decay pathway was activated, and a set of genes involved in major cardiac signaling pathways was dysregulated in HCM iPSC-CMs, indicating an HCM gene signature in vitro. Specific inhibition of the nonsense-mediated decay pathway in mutant iPSC-CMs resulted in reversal of the molecular phenotype and normalization of calcium-handling abnormalities. CONCLUSIONS: iPSC-CMs carrying MYBPC3 PTC mutations displayed aberrant calcium signaling and molecular dysregulations in the absence of significant haploinsufficiency of MYBPC3 protein. Here we provided the first evidence of the direct connection between the chronically activated nonsense-mediated decay pathway and HCM disease development.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Códon sem Sentido/genética , Mutação/genética , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/fisiologia , RNA Mensageiro/genética , Sinalização do Cálcio , Diferenciação Celular , Linhagem Celular , Progressão da Doença , Edição de Genes , Perfilação da Expressão Gênica , Haploinsuficiência , Humanos
13.
Circ Res ; 123(4): 443-450, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29986945

RESUMO

RATIONALE: Human-induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) have risen as a useful tool in cardiovascular research, offering a wide gamut of translational and clinical applications. However, inefficiency of the currently available iPSC-EC differentiation protocol and underlying heterogeneity of derived iPSC-ECs remain as major limitations of iPSC-EC technology. OBJECTIVE: Here, we performed droplet-based single-cell RNA sequencing (scRNA-seq) of the human iPSCs after iPSC-EC differentiation. Droplet-based scRNA-seq enables analysis of thousands of cells in parallel, allowing comprehensive analysis of transcriptional heterogeneity. METHODS AND RESULTS: Bona fide iPSC-EC cluster was identified by scRNA-seq, which expressed high levels of endothelial-specific genes. iPSC-ECs, sorted by CD144 antibody-conjugated magnetic sorting, exhibited standard endothelial morphology and function including tube formation, response to inflammatory signals, and production of NO. Nonendothelial cell populations resulting from the differentiation protocol were identified, which included immature cardiomyocytes, hepatic-like cells, and vascular smooth muscle cells. Furthermore, scRNA-seq analysis of purified iPSC-ECs revealed transcriptional heterogeneity with 4 major subpopulations, marked by robust enrichment of CLDN5, APLNR, GJA5, and ESM1 genes, respectively. CONCLUSIONS: Massively parallel, droplet-based scRNA-seq allowed meticulous analysis of thousands of human iPSCs subjected to iPSC-EC differentiation. Results showed inefficiency of the differentiation technique, which can be improved with further studies based on identification of molecular signatures that inhibit expansion of nonendothelial cell types. Subtypes of bona fide human iPSC-ECs were also identified, allowing us to sort for iPSC-ECs with specific biological function and identity.


Assuntos
Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Diferenciação Celular , Células Cultivadas , Claudina-5/genética , Claudina-5/metabolismo , Conexinas/genética , Conexinas/metabolismo , Células Endoteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Análise de Célula Única , Proteína alfa-5 de Junções Comunicantes
14.
Bioorg Chem ; 95: 103554, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911304

RESUMO

Two-spotted cricket Gryllus bimaculatus is one of many cricket species, and it is widely used as a food source for insectivorous animals. Moreover, this species is one of the edible insects approved by the Korea Food and Drug Administration (KFDA). (±)-Kituramides A (1) and B (2), which are pairs of novel enantiomeric dopamine dimers possessing a formamide group, were isolated from the two-spotted cricket, together with four other known biosynthetically related compounds (3-6). The chemical structures of 1 and 2 were elucidated using a combination of 1D and 2D NMR spectroscopic experiments and HR-ESIMS data. Compounds 1 and 2 were identified as racemic mixtures; the enantiomers (+)-1/2 and (-)-1/2 were successfully separated by utilizing a chiral HPLC column. The absolute configurations of (±)-1 and (±)-2 were unambiguously delineated by the application of quantum chemical ECD calculations. Further, these insect-derived substances were evaluated to understand their effects on cytokine expression in adipocytes. Treatment with (-)-1, (+)-2, and (-)-2 during adipocyte differentiation significantly promoted the expression of Leptin and IL-6, which resembles the actions of dopamine.


Assuntos
Dopamina/análogos & derivados , Gryllidae/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Dimerização , Dopamina/química , Estrutura Molecular , Estereoisomerismo
15.
Eur Heart J ; 40(45): 3685-3695, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31219556

RESUMO

AIMS: Diastolic dysfunction (DD) is common among hypertrophic cardiomyopathy (HCM) patients, causing major morbidity and mortality. However, its cellular mechanisms are not fully understood, and presently there is no effective treatment. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold great potential for investigating the mechanisms underlying DD in HCM and as a platform for drug discovery. METHODS AND RESULTS: In the present study, beating iPSC-CMs were generated from healthy controls and HCM patients with DD. Micropatterned iPSC-CMs from HCM patients showed impaired diastolic function, as evidenced by prolonged relaxation time, decreased relaxation rate, and shortened diastolic sarcomere length. Ratiometric Ca2+ imaging indicated elevated diastolic [Ca2+]i and abnormal Ca2+ handling in HCM iPSC-CMs, which were exacerbated by ß-adrenergic challenge. Combining Ca2+ imaging and traction force microscopy, we observed enhanced myofilament Ca2+ sensitivity (measured as dF/Δ[Ca2+]i) in HCM iPSC-CMs. These results were confirmed with genome-edited isogenic iPSC lines that carry HCM mutations, indicating that cytosolic diastolic Ca2+ overload, slowed [Ca2+]i recycling, and increased myofilament Ca2+ sensitivity, collectively impairing the relaxation of HCM iPSC-CMs. Treatment with partial blockade of Ca2+ or late Na+ current reset diastolic Ca2+ homeostasis, restored diastolic function, and improved long-term survival, suggesting that disturbed Ca2+ signalling is an important cellular pathological mechanism of DD. Further investigation showed increased expression of L-type Ca2+channel (LTCC) and transient receptor potential cation channels (TRPC) in HCM iPSC-CMs compared with control iPSC-CMs, which likely contributed to diastolic [Ca2+]i overload. CONCLUSION: In summary, this study recapitulated DD in HCM at the single-cell level, and revealed novel cellular mechanisms and potential therapeutic targets of DD using iPSC-CMs.


Assuntos
Cardiomiopatia Hipertrófica/genética , Insuficiência Cardíaca Diastólica/fisiopatologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/genética , Estudos de Casos e Controles , Diferenciação Celular , Insuficiência Cardíaca Diastólica/tratamento farmacológico , Insuficiência Cardíaca Diastólica/mortalidade , Humanos , Mutação , Cadeias Pesadas de Miosina/genética , Fenótipo , Sarcômeros/fisiologia , Troponina T/genética
16.
Molecules ; 25(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322233

RESUMO

Obesity causes a wide range of metabolic diseases including diabetes, cardiovascular disease, and kidney disease. Thus, plenty of studies have attempted to discover naturally derived compounds displaying anti-obesity effects. In this study, we evaluated the inhibitory effects of morolic acid 3-O-caffeate (MAOC), extracted from Betula schmidtii, on adipogenesis. Treatment of 3T3-L1 cells with MAOC during adipogenesis significantly reduced lipid accumulation and decreased the expression of adiponectin, a marker of mature adipocytes. Moreover, the treatment with MAOC only during the early phase (day 0-2) sufficiently inhibited adipogenesis, comparable with the inhibitory effects observed following MAOC treatment during the whole processes of adipogenesis. In the early phase of adipogenesis, the expression level of Wnt6, which inhibits adipogenesis, increased by MAOC treatment in 3T3-L1 cells. To identify the gene regulatory mechanism, we assessed alterations in histone modifications upon MAOC treatment. Both global and local levels on the Wnt6 promoter region of histone H3 lysine 4 trimethylation, an active transcriptional histone marker, increased markedly by MAOC treatment in 3T3-L1 cells. Our findings identified an epigenetic event associated with inhibition of adipocyte generation by MAOC, suggesting its potential as an efficient therapeutic compound to cure obesity and metabolic diseases.


Assuntos
Adipogenia/efeitos dos fármacos , Adipogenia/genética , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Estrutura Molecular , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt/genética
17.
BMC Cancer ; 19(1): 773, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387554

RESUMO

BACKGROUND: The mTOR/S6K1 signaling pathway is often activated in cervical cancer, and thus considered a molecular target for cervical cancer therapies. Inhibiting mTOR is cytotoxic to cervical cancer cells and creates a synergistic anti-tumor effect with conventional chemotherapy agents. In this study, we identified a novel S6K1 inhibitor, rosmarinic acid methyl ester (RAME) for the use of therapeutic agent against cervical cancer. METHODS: Combined structure- and ligand-based virtual screening was employed to identify novel S6K1 inhibitors among the in house natural product library. In vitro kinase assay and immunoblot assay was used to examine the effects of RAME on S6K1 signaling pathway. Lipidation of LC3 and mRNA levels of ATG genes were observed to investigate RAME-mediated autophagy. PARP cleavage, mRNA levels of apoptotic genes, and cell survival was measured to examine RAME-mediated apoptosis. RESULTS: RAME was identified as a novel S6K1 inhibitor through the virtual screening. RAME, not rosmarinic acid, effectively reduced mTOR-mediated S6K1 activation and the kinase activity of S6K1 by blocking the interaction between S6K1 and mTOR. Treatment of cervical cancer cells with RAME promoted autophagy and apoptosis, decreasing cell survival rate. Furthermore, we observed that combination treatment with RAME and cisplatin greatly enhanced the anti-tumor effect in cisplatin-resistant cervical cancer cells, which was likely due to mTOR/S6K1 inhibition-mediated autophagy and apoptosis. CONCLUSIONS: Our findings suggest that inhibition of S6K1 by RAME can induce autophagy and apoptosis in cervical cancer cells, and provide a potential option for cervical cancer treatment, particularly when combined with cisplatin.


Assuntos
Antineoplásicos/farmacologia , Cinamatos/farmacologia , Depsídeos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/química , Cisplatino/farmacologia , Depsídeos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Técnicas de Silenciamento de Genes , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Neoplasias do Colo do Útero
18.
Circ Res ; 121(11): 1237-1250, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29030344

RESUMO

RATIONALE: Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. OBJECTIVE: We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. METHODS AND RESULTS: We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31+CD144+), cardiac progenitor cells (Sca-1+), fibroblasts (DDR2+), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. CONCLUSIONS: Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , DNA/genética , Células Endoteliais/metabolismo , Epigênese Genética , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Elementos Reguladores de Transcrição , Animais , Células Cultivadas , Reprogramação Celular , Técnicas de Reprogramação Celular , Cromatina/metabolismo , DNA/metabolismo , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos Transgênicos , Fenótipo , Regiões Promotoras Genéticas , Transfecção
19.
Circ Res ; 120(10): 1561-1571, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28246128

RESUMO

RATIONALE: Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. OBJECTIVE: The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. METHODS AND RESULTS: By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout 88 human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene knockout. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the utility of the TALEN-mediated knockout technique, 6 individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a pathogenic mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes, we demonstrated that the knockout strategy ameliorates the dilated cardiomyopathy phenotype in vitro. In addition, we modeled the Holt-Oram syndrome in iPSC-cardiac myocytes in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. CONCLUSIONS: Collectively, our study illustrates the powerful combination of iPSCs and genome editing technologies for understanding the biological function of genes, and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs, and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research.


Assuntos
Doenças Cardiovasculares/genética , Técnicas de Inativação de Genes/métodos , Biblioteca Gênica , Engenharia Genética/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Sequência de Bases , Doenças Cardiovasculares/terapia , Células Cultivadas , Marcação de Genes/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/transplante
20.
J Nat Prod ; 82(12): 3489-3493, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31724396

RESUMO

Amanita pantherina is a poisonous mushroom that causes muscle cramps, insanity, and audiovisual disorders. As part of our systematic study on Korean mushrooms, a chemical investigation of A. pantherina fruiting bodies resulted in the isolation and structural identification of three new fatty acid derivatives, pantheric acids A-C (1-3), and a known compound, 1,10-dimethyl ester-2-decenedioic acid (4). Although 1,10-dimethyl ester-2-decenedioic acid (4) was previously reported as a synthetic product, it was structurally identified from a natural source for the first time. The structures of the new compounds were established by detailed analysis of 1D and 2D (1H-1H COSY, HSQC, and HMBC) NMR, HRMS, and LC/MS/MS data. The absolute configurations of compounds 1 and 2 were unambiguously determined by a recently developed method using competing enantioselective acylation coupled with LC/MS analysis. The isolated compounds (1-4) were evaluated for their effects on lipid accumulation during adipocyte maturation. Pantheric acids A-C (1-3) promoted the enlargement of lipid droplets in 3T3-L1 adipocytes and altered lipid metabolism by inducing lipogenesis and inhibiting lipolysis. Our findings provide experimental evidence suggesting the potential adverse effects of pantheric acids A-C from a poisonous mushroom on lipid metabolism.


Assuntos
Adipócitos/efeitos dos fármacos , Amanita/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Camundongos , Estrutura Molecular , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA