Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Am Chem Soc ; 145(16): 9304-9312, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043219

RESUMO

Atomically precise metal nanoclusters (NCs) are an intriguing class of crystalline solids with unique physicochemical properties derived from tunable structures and compositions. Most atomically precise NCs require closed-shells and coordinatively saturated surface metals in order to be stable. Herein, we report Au43(C≡CtBu)20 and Au42Ag1(C≡CtBu)20, which feature open electronic and geometric shells, leading to both paramagnetism (23 valence e-) and enhanced catalytic activity from a single coordinatively unsaturated surface metal. The Au-alkynyl surface motifs of these NCs form five helical stripes around the inner Au12 kernel, imparting chirality and high thermal stability. Density functional theory (DFT) calculations suggest that there are minimal energy differences between the open-shelled NCs and hypothetical closed-shell systems and that the open-shelled electronic configuration gives rise to the largest band gap, which is known to promote cluster stability. Furthermore, we highlight how coordinatively unsaturated surface metals create active sites for the catalytic oxidation of benzyl alcohol to benzaldehyde, leading to high selectivity and increased conversion. This work represents the first example of an atomically precise Au NC with a double open-shelled structure and provides a promising platform for investigating the magnetic and catalytic properties of noble metal nanoparticles.

2.
Sensors (Basel) ; 23(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850561

RESUMO

By 2040, the Korean government aims for a penetration rate of 30-35% of the total power from renewable sources. Due to a lack of inertia, particularly in remote systems such as those on Jeju Island, these circumstances will reduce network stability. To maintain the diversity and unpredictability of RES penetration, HVDC systems with an exchange of frequency containment reserve control are utilized. An exchange of frequency containment reserves control (E-FCR) is one of the balancing arrangement concepts of HVDC systems. However, the development of E-FCR concepts is vulnerable to cyber attacks because this concept only considers one wide-area measurement for data exchange. This study established a simultaneous cyber attack operation, i.e., an attack was set at the same time as a contingency operation that affects the balancing arrangement between two regions. Multiple possibilities of cyber attack and mitigation operations were suggested according to their ability to access information in the MIDC system. Then, a cyber detection strategy was proposed through a normalized correlation concept to activate mitigation control that could enhance the frequency stability by adjusting the value of the ramp-rate deviation between two HVDC types. By simulating the Korean power system model that was implemented in PSS/E, along with a Python script, simulation results demonstrated that a cyber attack on missing data can cause severe low-frequency nadir responses, and the proposed methodology can practically detect and mitigate cyber attacks.

3.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203390

RESUMO

Odorant molecules interact with odorant receptors (ORs) lining the pores on the surface of the sensilla on an insect's antennae and maxillary palps. This interaction triggers an electrical signal that is transmitted to the insect's nervous system, thereby influencing its behavior. Orco, an OR coreceptor, is crucial for olfactory transduction, as it possesses a conserved sequence across the insect lineage. In this study, we focused on 2,4-di-tert-butylphenol (DTBP), a single substance present in acetic acid bacteria culture media. We applied DTBP to oocytes expressing various Drosophila melanogaster odor receptors and performed electrophysiology experiments. After confirming the activation of DTBP on the receptor, the binding site was confirmed through point mutations. Our findings confirmed that DTBP interacts with the insect Orco subunit. The 2-heptanone, octanol, and 2-hexanol were not activated for the Orco homomeric channel, but DTBP was activated, and the EC50 value was 13.4 ± 3.0 µM. Point mutations were performed and among them, when the W146 residue changed to alanine, the Emax value was changed from 1.0 ± 0 in the wild type to 0.0 ± 0 in the mutant type, and all activity was decreased. Specifically, DTBP interacted with the W146 residue of the Orco subunit, and the activation manner was concentration-dependent and voltage-independent. This molecular-level analysis provides the basis for novel strategies to minimize pest damage. DTBP, with its specific binding to the Orco subunit, shows promise as a potential pest controller that can exclusively target insects.


Assuntos
Ácido Acético , Cicloexanos , Drosophila melanogaster , Fenóis , Animais , Drosophila melanogaster/genética , Alanina
4.
J Nanosci Nanotechnol ; 19(10): 6297-6302, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026951

RESUMO

We successfully grew a uniform and high-transmittance La-doped BaSnO3 (LBSO) thin film by reducing the LBSO particle size and improving film uniformity. We report an alternating magnetic stirring and ultrasonication process that can effectively reduce the size of particles in the colloid. A two-step spin coating process can improve thin film uniformity. A two-step spin coating process consists of two main steps: aggregation and gradual evolution. Aggregation is achieved by a single coating, which causes the colloidal to particles agglomerate into uneven clusters on the substrate. The gradual evolution step improves the quality of the films by filling the pinholes left by the initial coating.

5.
J Nanosci Nanotechnol ; 19(3): 1360-1363, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469188

RESUMO

The shingled array of solar cells has the advantages of a larger active area and smaller current density than conventional solar cells. Because the power loss is mainly driven by the decrease in current density, this new method has the benefit of increasing module power with the same installed area as used in other methods. As the electrically conductive adhesive (ECA), CA3556HF was chosen and characterized by analysis of reflectance and sheet resistance. These analyzed data show consistent and relevant results for the cell efficiency of separated and serially connected cells fabricated by means of the shingled array method. We successfully demonstrated the increase of the high density module (HDM) power by 5.1% for a 30 cm×30 cm area and the fill factor also increased by 2% compared with conventional modules.

6.
J Nanosci Nanotechnol ; 19(3): 1415-1419, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469198

RESUMO

Chromium-doped carbon (Cr:C) films were fabricated by using unbalanced magnetron sputtering with chromium (Cr) and graphite (C) targets. We investigated the structural, tribological, and electrical properties of the Cr:C films fabricated with various target power densities. The surface of all the Cr:C films was smooth and uniform, and the cross section showed a more compact and clear columnar structure as the target power density increased. The root mean square surface roughness increased and the contact angle on the film surface increased with the increase in target power density. Furthermore, the hardness and elastic modulus of the Cr:C films showed improvements, while the resistivity decreased with the increase in target power density. These results are associated with the ion bombardment and resputtering owing to the effects of the applied target power density.


Assuntos
Carbono , Cromo , Dureza , Stents , Propriedades de Superfície
7.
J Nanosci Nanotechnol ; 19(3): 1635-1639, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469236

RESUMO

The effect of using an Intense Pulse Light system has been studied on zinc sulfide thin films and Cu(In, Ga)Se2 solar cells. The deposition of thin films on the zinc sulfide buffer layer is carried out on the glass and Cu(In, Ga)Se2 using the chemical bath deposition process. These zinc sulfide thin films were then subjected to treatment at different irradiation light intensities from 500 W to 2000 W, and then the effects on the layer were compared to a thermal annealed layer. The morphology and optical transmittance of the zinc sulfide layer were analyzed by field emission scanning electron microscopy and ultraviolet-visible spectrophotometry, respectively. This methodology was also applied to fabricate and investigate the efficiency, short-circuit current density, and external quantum efficiencies of the solar cells. This analysis shows that the treatments significantly change the properties of the zinc sulfide buffer layer and performance of the Cu(In, Ga)Se2 thin film solar cells.

8.
J Nanosci Nanotechnol ; 19(3): 1666-1669, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469241

RESUMO

Vanadium oxide (VOx) thin films were deposited by an unbalanced magnetron (UBM) sputtering system with a vanadium metal target and O2 reaction gas, and thermally treated at various annealing temperatures. In this work, the structural, electrical, and optical properties of the fabricated VOx films with various annealing temperatures were experimentally investigated. The UBM sputter grown VOx thin films exhibited amorphous structure, and had a very weak peak of V2O5 (002) owing to very thin films. However, the crystallite size of VOx films increased with increasing annealing temperature. The surface roughness of VOx films and average transmittance decreased with increasing annealing temperature. The resistivity of VOx films also decreased with increasing annealing temperature, while the electrical properties of films improved.

9.
J Nanosci Nanotechnol ; 18(9): 5965-5969, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677725

RESUMO

A good medical guidewires are used to introduce stents, catheters, and other medical devices inside the human body. In this study, diamond-like carbon (DLC) film was proposed to solve the poor adhesion problem of guidewire and to improve the tribological performance of guidewire. DLC films were fabricated on Si substrate by using FVA (Filtered Vacuum Arc) method. In this work, the tribological, structural, and electrical properties of the fabricated DLC films with various arc currents were experimentally investigated. All DLC films showed smooth and uniform surface with increasing applied arc current. The rms surface roughness was increased and the value of contact angle on the film surface was decreased with increasing arc current. The hardness and elastic modulus of DLC films were improved, and the resistivity value of DLC films were decreased with increasing arc current. These results are associated with ion bombardment effects by the applied arc current and bias voltage.

10.
J Nanosci Nanotechnol ; 18(9): 5899-5903, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677713

RESUMO

Hafnium-silicate (HfSiO4, (HfO2)x(SiO2)1-x) and hafnium-zirconate (HfZrO4, (HfO2)x(ZrO2)1-x) films were employed as a gate dielectric to enhance the electrical properties of pure HfO2. (HfO2)x(SiO2)1-x and (HfO2)x(ZrO2)1-x films were formed onto p-Si substrates with varying degrees of Hf content x (x = 1, 0.9, 0.7, and 0.5) via solution processing. With regard to (HfO2)x(SiO2)1-x, the leakage current decreased from 1.94 × 10-8 to 4.29 × 10-9 A/cm2 at a gate voltage of VG = -1 V when the HfO2 content was reduced. These resulted from the reduction of leakage paths through the interface between HfSiO4 and Si substrate. Additionally, (HfO2)x(ZrO2)1-x exhibited the lowest interfacial trap density of 3.4 × 1011 cm-2 eV-1 for x = 0.5 due to a reduction in root mean square (RMS) roughness of the film from 6.0 to 4.2 nm. From the results, it was found that (HfO2)0.5(SiO2)0.5 demonstrated excellent oxide integrity in contact with Si substrates, whereas (HfO2)0.5(ZrO2)0.5 demonstrated an enhanced film morphology and maintained a high dielectric constant value. Finally, the HfZrO4/HfSiO4/Si structure revealed a gate oxide with enhanced integrity compared to pure HfO2-based devices.

11.
J Nanosci Nanotechnol ; 18(9): 6506-6510, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677822

RESUMO

Cr metal electrode was suggested as the working electrode material to fabricate DSSCs without the TCO, and thin films were fabricated by an unbalanced magnetron sputtering system. The surface morphologies show uniform and smooth surfaces regardless of various film thicknesses, and the small crystallites of various sizes were showed with the vertical direction on the surface of Cr thin films with the increase of film thickness. And also, the root mean square (RMS) surface roughness value of Cr thin films increased, and the sheet resistance is decreased with the increase of film thickness. The maximum cell efficiency of the TCO-less DSSC was observed when a Cr working electrode with a thickness of 80 nm was applied to the TCO-less DSSC. Consequently, these results are related to the result of the optimization of conduction characteristics, transmission properties and surface properties of Cr thin films.

12.
J Nanosci Nanotechnol ; 14(12): 8999-9004, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25970998

RESUMO

Si(1-x)Ge(x) epitaxial layers with various Ge fractions sample were characterized by photoluminescence intensity method at room temperature. Photoluminescence intensity was affected by minority carrier lifetime, defect density, and surface condition. PL intensity profile showed misfit dislocation on epitaxial layer for 15%, 21%, 24%, and 26%, since dislocations were one of minority carrier lifetime degradation parameters. It clearly showed misfit dislocation profiles, cross-hatch, and PL intensity was low at dislocation region.


Assuntos
Germânio/química , Silício/química , Luminescência , Propriedades de Superfície
13.
J Nanosci Nanotechnol ; 14(5): 3880-3, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734656

RESUMO

In this work, cadmium sulfide (CdS) films were deposited on flexible polymer substrates such as polycarbonate (PC) and polyethylene terephthalate (PET). The r.f. magnetron sputtering, which is cost-effective scalable technique, was used for the film deposition. The structural and optical properties of the films grown at different sputtering pressures were investigated. When the CdS film was deposited at lower pressure, the crystallinity and the preferred orientation toward c-axis in hexagonal phase was improved. However, the optical transmittance was reduced as the sputtering pressure was decreased. Compared with the glass substrate, CdS films grown on polymer substrates were exhibited some wore structural and optical characteristics. CdTe thin film solar cell applied to sputtered CdS as a window layer showed a maximum efficiency of 11.6%.

14.
J Nanosci Nanotechnol ; 14(5): 3872-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734654

RESUMO

Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

15.
J Nanosci Nanotechnol ; 14(12): 9313-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971057

RESUMO

Chalcopyrite CuInSe2 (CIS) nanoparticles were synthesized in oleic acid, 1-octadecene, oleyl amine and tetraethylene glycol at temperature above 200 degrees C. Depending on the solvent used and reaction temperature, the obtained nanoparticles had different shapes, sizes, chemical compositions, and crystal and thermal properties. CIS powders synthesized in oleic acid, 1-octadecene and oleyl amine above 200 degrees C exhibited chalcopyrite structure. On the other hand, powders prepared in tetraethylene glycol contained a mixture of CIS and CuSe compounds. The CIS powder obtained in oleyl amine had a high thermal stability over 500 degrees C. CIS thin films prepared from nanoparticles were heat-treated in order to observe changes in their property. After 10 min heat-treatment at 500 degrees C, their crystal structure and chemical composition were slightly changed, and their band gap energies were ca. 1.01 eV except in the case of powders prepared in tetraethylene glycol.


Assuntos
Fontes de Energia Elétrica , Nanopartículas , Energia Solar , Solventes/química , Pós
16.
Heliyon ; 10(5): e26532, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434311

RESUMO

The industrial manufacturing landscape is currently shifting toward the incorporation of technologies based on artificial intelligence (AI). This transition includes an evolution toward smart factory infrastructure, with a specific focus on AI-driven strategies in production and quality control. Specifically, AI-empowered computer vision has emerged as a potent tool that offers a departure from extant rule-based systems and provides enhanced operational efficiency at manufacturing sites. As the manufacturing sector embraces this new paradigm, the impetus to integrate AI-integrated manufacturing is evident. Within this framework, one salient application is AI deep learning-facilitated small-object detection, which is poised to have extensive implications for diverse industrial applications. This study describes an optimized iteration of the YOLOv5 model, which is known for its efficacious single-stage object-detection abilities underpinned by PyTorch. Our proposed "improved model" incorporates an additional layer to the model's canonical three-layer architecture, augmenting accuracy and computational expediency. Empirical evaluations using semiconductor X-ray imagery reveal the model's superior performance metrics. Given the intricate specifications of surface-mount technologies, which are characterized by a plethora of micro-scale components, our model makes a seminal contribution to real-time, in-line production assessments. Quantitative analyses show that our improved model attained a mean average precision of 0.622, surpassing YOLOv5's 0.349, and a marked accuracy enhancement of 0.865, which is a significant improvement on YOLOv5's 0.552. These findings bolster the model's robustness and potential applicability, particularly in discerning objects at reel granularities during real-time inferencing.

17.
Biomimetics (Basel) ; 9(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38534863

RESUMO

This study explores the efficacy of metaheuristic-based feature selection in improving machine learning performance for diagnosing sarcopenia. Extraction and utilization of features significantly impacting diagnosis efficacy emerge as a critical facet when applying machine learning for sarcopenia diagnosis. Using data from the 8th Korean Longitudinal Study on Aging (KLoSA), this study examines harmony search (HS) and the genetic algorithm (GA) for feature selection. Evaluation of the resulting feature set involves a decision tree, a random forest, a support vector machine, and naïve bayes algorithms. As a result, the HS-derived feature set trained with a support vector machine yielded an accuracy of 0.785 and a weighted F1 score of 0.782, which outperformed traditional methods. These findings underscore the competitive edge of metaheuristic-based selection, demonstrating its potential in advancing sarcopenia diagnosis. This study advocates for further exploration of metaheuristic-based feature selection's pivotal role in future sarcopenia research.

18.
J Nanosci Nanotechnol ; 13(10): 7116-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24245205

RESUMO

We report aluminum doped zinc oxide (AZO) films with high work function as an insertion layer between transparent conducting oxides (TCO) and hydrogenated amorphous silicon carbide (a-SiC:H) layer to improve open circuit voltage (V(oc)) and fill factor (FF) for thin film solar cells. Amorphous silicon (a-Si:H) solar cells exhibit poor fill factors due to a Schottky barrier at the interface between a-SiC:H window and TCO. The interface engineering is carried out by inserting an AZO layer with high work function (4.95 eV at O2 = 2 sccm). As a result, V(oc) and FF improved significantly. FF as high as 63.35% is obtained.

19.
J Electr Eng Technol ; : 1-11, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37362030

RESUMO

In this study, we analyzed the impact of multi-terminal direct current (MTDC) system on the integration of renewable energy resources into the Korean power system. Due to the large-scale renewable energy plants planned to be integrated into the power system, line congestion is expected in the southern part of power system. Given the difficulty in constructing AC transmission lines due to social conflicts, we proposed an alternative solution using an offshore multi-terminal DC offshore transmission system. Firstly, we calculate the effective renewable energy plant generation capacity based on annual wind and solar radiation data. Next, we conduct PSS/E simulations to minimize future line congestion in the Korean power grid. The offshore terminal is designed to transfer the power generated in southern Korea and is verified using different terminal rating cases. The simulation result, including contingency analysis, demonstrate that transferring 80% of the generated renewable power achieves the best line flow condition. Therefore, the MTDC system is a possible candidate for integrating future renewable energy systems into the Korean power grid.

20.
Genes (Basel) ; 14(2)2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36833211

RESUMO

Chronic obstructive pulmonary disease (COPD) was the third most prevalent cause of mortality worldwide in 2010; it results from a progressive and fatal deterioration of lung function because of cigarette smoking and particulate matter (PM). Therefore, it is important to identify molecular biomarkers that can diagnose the COPD phenotype to plan therapeutic efficacy. To identify potential novel biomarkers of COPD, we first obtained COPD and the normal lung tissue gene expression dataset GSE151052 from the NCBI Gene Expression Omnibus (GEO). A total of 250 differentially expressed genes (DEGs) were investigated and analyzed using GEO2R, gene ontology (GO) functional annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) identification. The GEO2R analysis revealed that TRPC6 was the sixth most highly expressed gene in patients with COPD. The GO analysis indicated that the upregulated DEGs were mainly concentrated in the plasma membrane, transcription, and DNA binding. The KEGG pathway analysis indicated that the upregulated DEGs were mainly involved in pathways related to cancer and axon guidance. TRPC6, one of the most abundant genes among the top 10 differentially expressed total RNAs (fold change ≥ 1.5) between the COPD and normal groups, was selected as a novel COPD biomarker based on the results of the GEO dataset and analysis using machine learning models. The upregulation of TRPC6 was verified in PM-stimulated RAW264.7 cells, which mimicked COPD conditions, compared to untreated RAW264.7 cells by a quantitative reverse transcription polymerase chain reaction. In conclusion, our study suggests that TRPC6 can be regarded as a potential novel biomarker for COPD pathogenesis.


Assuntos
Redes Reguladoras de Genes , Doença Pulmonar Obstrutiva Crônica , Humanos , Canal de Cátion TRPC6/genética , Material Particulado , Doença Pulmonar Obstrutiva Crônica/genética , Biomarcadores , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA