Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 101: 129656, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355061

RESUMO

To discover mode-selective TRPV1 antagonists as thermoneutral drug candidates, the previous potent antagonist benzopyridone 2 was optimized based on the pharmacophore A- and C-regions. The structure activity relationship was investigated systematically by modifying the A-region by incorporating a polar side chain on the pyridone and then by changing the C-region with a variety of substituted pyridine and pyrazole moieties. The 3-t-butyl and 3-(1-methylcyclopropyl) pyrazole C-region analogs provided high potency as well as mode-selectivity. Among them, 51 and 54 displayed potent and capsaicin-selective antagonism with IC50 = 2.85 and 3.27 nM to capsaicin activation and 28.5 and 31.5 % inhibition at 3 µM concentration toward proton activation, respectively. The molecular modeling study of 51 with our homology model indicated that the hydroxyethyl side chain in the A-region interacted with Arg557 and Glu570, the urea B-region engaged in hydrogen bonding with Tyr511 and Thr550, respectively, and the pyrazole C-region made two hydrophobic interactions with the receptor. Optimization of antagonist 2, which has full antagonism for activators of all modes, lead to mode-selective antagonists 51 and 54. These observations will provide insight into the future development of clinical TRPV1 antagonists without target-based side effects.


Assuntos
Capsaicina , Ureia , Ureia/química , Capsaicina/farmacologia , Relação Estrutura-Atividade , Modelos Moleculares , Pirazóis/farmacologia , Canais de Cátion TRPV
2.
Bioorg Med Chem Lett ; 106: 129735, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588785

RESUMO

A series of 1,4-benzoxazin-3-one analogs were investigated to discover mode-selective TRPV1 antagonists, since such antagonists are predicted to minimize target-based adverse effects. Using the high-affinity antagonist 2 as the lead structure, the structure activity relationship was studied by modifying the A-region through incorporation of a polar side chain on the benzoxazine and then by changing the C-region with a variety of substituted pyridine, pyrazole and thiazole moieties. The t-butyl pyrazole and thiazole C-region analogs provided high potency as well as mode-selectivity. Among them, antagonist 36 displayed potent and capsaicin-selective antagonism with IC50 = 2.31 nM for blocking capsaicin activation and only 47.5 % inhibition at 3 µM concentration toward proton activation, indicating that more than a 1000-fold higher concentration of 36 was required to inhibit proton activation than was required to inhibit capsaicin activation. The molecular modeling study of 36 with our homology model indicated that two π-π interactions with the Tyr511 and Phe591 residues by the A- and C-region and hydrogen bonding with the Thr550 residue by the B-region were critical for maintaining balanced and stable binding. Systemic optimization of antagonist 2, which has high-affinity but full antagonism for activators of all modes, led to the mode-selective antagonist 36 which represents a promising step in the development of clinical TRPV1 antagonists minimizing side effects such as hyperthermia and impaired heat sensation.


Assuntos
Benzoxazinas , Canais de Cátion TRPV , Ureia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Relação Estrutura-Atividade , Benzoxazinas/química , Benzoxazinas/farmacologia , Benzoxazinas/síntese química , Ureia/análogos & derivados , Ureia/química , Ureia/farmacologia , Ureia/síntese química , Humanos , Estrutura Molecular , Animais , Capsaicina/farmacologia , Capsaicina/química , Descoberta de Drogas , Relação Dose-Resposta a Droga
3.
Biochemistry ; 62(18): 2717-2726, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37651159

RESUMO

Munc13-1 is a key protein necessary for vesicle fusion and neurotransmitter release in the brain. Diacylglycerol (DAG)/phorbol ester binds to its C1 domain in the plasma membrane and activates it. The C1 domain of Munc13-1 and protein kinase C (PKC) are homologous in terms of sequence and structure. In order to identify small-molecule modulators of Munc13-1 targeting the C1 domain, we studied the effect of three DAG-lactones, (R,Z)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-oxotetrahydrofuran-2-yl)methyl pivalate (JH-131e-153), (E)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-oxotetrahydrofuran-2-yl)methyl pivalate (AJH-836), and (E)-(2-(hydroxymethyl)-4-(4-nitrobenzylidene)-5-oxotetrahydrofuran-2-yl)methyl 4-(dimethylamino)benzoate (130C037), on Munc13-1 activation using the ligand-induced membrane translocation assay. JH-131e-153 showed higher activation than AJH-836, and 130C037 was not able to activate Munc13-1. To understand the role of the ligand-binding site residues in the activation process, three alanine mutants were generated. For AJH-836, the order of activation was wild-type (WT) Munc13-1 > R592A > W588A > I590A. For JH-131e-153, the order of activation was WT > I590 ≈ R592A ≈ W588A. Overall, the Z isomer of DAG-lactones showed higher potency than the E isomer and Trp-588, Ile-590, and Arg-592 were important for its binding. When comparing the activation of Munc13-1 and PKC, the order of activation for JH-131e-153 was PKCα > Munc13-1 > PKCε and for AJH-836, the order of activation was PKCε > PKCα > Munc13-1. Molecular docking supported higher binding of JH-131e-153 than AJH-836 with the Munc13-1 C1 domain. Our results suggest that DAG-lactones have the potential to modulate neuronal processes via Munc13-1 and can be further developed for therapeutic intervention for neurodegenerative diseases.


Assuntos
Diglicerídeos , Proteína Quinase C-alfa , Ligantes , Simulação de Acoplamento Molecular , Proteína Quinase C , Lactonas/farmacologia
4.
Bioorg Med Chem Lett ; 91: 129353, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271378

RESUMO

The natural products neorautenol and shinpterocarpin and their structural analogs were investigated as novel anticancer agents. Twenty-four analogs, including analogs containing a polar chain and simplified analogs, were synthesized efficiently by a modified method from previous reports. The antitumor screening of synthesized compounds toward six cancer cell lines indicated that compounds 37, 42 and 43 with a dialkylaminoethyl-type side chain exhibited more promising activity than neorautenol and shinpterocarpin against lung and colon cancer lines with a range of 4-9 µM. They showed selective toxicity in normal cells.


Assuntos
Antineoplásicos , Estrutura Molecular , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral
5.
Bioorg Med Chem Lett ; 65: 128693, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35314328

RESUMO

A series of N-benzyl 5-(4-sulfamoylbenzylidene-2-thioxothiazolidin-4-one analogs, designed as hybrids of CY09 and JC121, were investigated as inhibitors of NLRP3 inflammasome activation. Among them, compounds 34 and 36 were identified as promising NLRP3 inhibitors by measuring the amount of active caspase-1 p20 and IL-1ß produced by NLRP3 inflammasome activation. Further studies indicated that both compounds inhibited NLRP3 inflammasome assembly by reducing the formation of NLRP3 and ASC oligomer specks and selectively inhibited only NLRP3 inflammasome activation and not other inflammasomes such as NLRC4 and AIM2.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Caspase 1 , Proteínas de Ligação a DNA , Interleucina-1beta
6.
Chirality ; 34(3): 498-513, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34962318

RESUMO

Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. In our previous work, we identified in racemate 1-2, based on the 2-benzyl-3-hydroxypropyl ester scaffold, two new potent and promising PKCα and PKCδ ligands, targeting the C1 domain of these two kinases. Herein, we report the resolution of the racemates by enantioselective semi-preparative HPLC. The attribution of the absolute configuration (AC) of homochirals 1 was performed by NMR, via methoxy-α-trifluoromethyl-α-phenylacetic acid derivatization (MTPA or Mosher's acid). Moreover, the match between the experimental and predicted electronic circular dichroism (ECD) spectra confirmed the assigned AC. These results proved that Mosher's esters can be properly exploited for the determination of the AC also for chiral primary alcohols. Lastly, homochiral 1 and 2 were assessed for binding affinity and functional activity against PKCα. No significative differences in the Ki of the enantiopure compounds was observed, thus suggesting that chirality does not seem to play a significant role in targeting PKC C1 domain. These results are in accordance with the molecular docking studies performed using a new homology model for the human PKCαC1B domain.


Assuntos
Ésteres , Proteína Quinase C-alfa , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Simulação de Acoplamento Molecular , Estereoisomerismo
7.
Bioorg Med Chem Lett ; 45: 128134, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34044120

RESUMO

A series of O-substituted analogs of the C-ring-truncated scaffold of deguelin designed as heat shock protein 90 (HSP90) C-terminal inhibitors were investigated as novel antitumor agents against human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Among the synthesized compounds, compound 37 displayed significant inhibition in both trastuzumab-sensitive and trastuzumab-resistant breast cancer cells with little cytotoxicity to normal cells. Mechanistic studies of compound 37 carried out by HSP90α C-terminal inhibitor screening, the induction of the heat shock response and downregulation of HSP90 client proteins indicated that the antitumor activity of 37 in breast cancer cells could be attributed to the destabilization and inactivation of HSP90 client proteins by the binding of 37 to the C-terminal domain of HSP90. A molecular docking study of compound 37 with a HSP90 homology model indicated that its S-isomer fit well in the ATP binding site of the C-terminal domain, forming key interactions.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Descoberta de Drogas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Rotenona/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Rotenona/síntese química , Rotenona/química , Rotenona/farmacologia , Relação Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 40: 127963, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33741464

RESUMO

Human indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan dioxygenase (hTDO) are rate-limiting enzymes in the kynurenine pathway (KP) of l-tryptophan (l-Trp) metabolism and are becoming key drug targets in the combination therapy of checkpoint inhibitors in immunoncology. To discover a selective and potent IDO1 inhibitor, a structure-activity relationship (SAR) study of N-hydroxybenzofuran-5-carboximidamide as a novel scaffold was investigated in a systematic manner. Among the synthesized compounds, the N-3-bromophenyl derivative 19 showed the most potent inhibition, with an IC50 value of 0.44 µM for the enzyme and 1.1 µM in HeLa cells. The molecular modeling of 19 with the X-ray crystal structure of IDO1 indicated that dipole-ionic interactions with heme iron, halogen bonding with Cys129 and the two hydrophobic interactions were important for the high potency of 19.


Assuntos
Amidinas/farmacologia , Benzofuranos/farmacologia , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Oximas/farmacologia , Amidinas/síntese química , Amidinas/metabolismo , Benzofuranos/síntese química , Benzofuranos/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Oximas/síntese química , Oximas/metabolismo , Ligação Proteica , Eletricidade Estática , Relação Estrutura-Atividade
9.
Bioorg Med Chem Lett ; 48: 128266, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273488

RESUMO

A series consisting of 117 2-(halogenated phenyl) acetamide and propanamide analogs were investigated as TRPV1 antagonists. The structure-activity analysis targeting their three pharmacophoric regions indicated that halogenated phenyl A-region analogs exhibited a broad functional profile ranging from agonism to antagonism. Among the compounds, antagonists 28 and 92 exhibited potent antagonism toward capsaicin for hTRPV1 with Ki[CAP] = 2.6 and 6.9 nM, respectively. Further, antagonist 92 displayed promising analgesic activity in vivo in both phases of the formalin mouse pain model. A molecular modeling study of 92 indicated that the two fluoro groups in the A-region made hydrophobic interactions with the receptor.


Assuntos
Acetamidas/farmacologia , Amidas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Acetamidas/síntese química , Acetamidas/química , Amidas/síntese química , Amidas/química , Animais , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismo
10.
Mol Cancer ; 19(1): 161, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218356

RESUMO

Trastuzumab resistance in HER2-positive breast cancer is associated with a poorer prognosis. HSP90 is thought to play a major role in such resistance, but N-terminal inhibitors of this target have had little success. We sought to investigate the utility of NCT-547, a novel, rationally-designed C-terminal HSP90 inhibitor in the context of overcoming trastuzumab resistance. NCT-547 treatment significantly induced apoptosis without triggering the heat shock response (HSR), accompanied by caspase-3/- 7 activation in both trastuzumab-sensitive and -resistant cells. NCT-547 effectively promoted the degradation of full-length HER2 and truncated p95HER2, while also attenuating hetero-dimerization of HER2 family members. The impairment of cancer stem-like traits was observed with reductions in ALDH1 activity, the CD24low/CD44high subpopulation, and mammosphere formation in vitro and in vivo. NCT-547 was an effective inhibitor of tumor growth and angiogenesis, and no toxic outcomes were found in initial hepatic and renal analysis. Our findings suggest that NCT-547 may have applications in addressing trastuzumab resistance in HER2-positive breast cancer.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Trastuzumab/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos Imunológicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas , Domínios Proteicos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Bioorg Med Chem Lett ; 30(23): 127548, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931910

RESUMO

A series of 1-indazol-3-(1-phenylpyrazol-5-yl)methyl ureas were investigated as hTRPV1 antagonists. The structure-activity relationship study was conducted systematically for both the indazole A-region and the 3-trifluoromethyl/t-butyl pyrazole C-region to optimize the antagonism toward the activation by capsaicin. Among them, the antagonists 26, 50 and 51 displayed highly potent antagonism with Ki(CAP) = 0.4-0.5 nM. Further, in vivo studies in mice indicated that these derivatives both antagonized capsaicin induced hypothermia, consistent with their in vitro activity, and themselves did not induce hyperthermia. In the formalin model, 51 showed anti-nociceptive activity in a dose-dependent manner.


Assuntos
Indazóis/farmacologia , Compostos de Metilureia/farmacologia , Pirazóis/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Analgésicos/síntese química , Analgésicos/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Células CHO , Capsaicina/farmacologia , Cricetulus , Humanos , Indazóis/síntese química , Compostos de Metilureia/síntese química , Camundongos , Estrutura Molecular , Pirazóis/síntese química , Relação Estrutura-Atividade , Canais de Cátion TRPV/agonistas
12.
Bioorg Med Chem Lett ; 30(17): 127374, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738983

RESUMO

A series of O-substituted analogues of the B,C-ring truncated scaffold of deguelin were designed as C-terminal inhibitors of heat shock protein 90 (HSP90) and investigated as novel antiproliferative agents against HER2-positive breast cancer. Among the synthesized compounds, compound 80 exhibited significant inhibition in both trastuzumab-sensitive and trastuzumab-resistant breast cancer cells, whereas compound 80 did not show any cytotoxicity in normal cells. Compound 80 markedly downregulated the expression of the major client proteins of HSP90 in both cell types, indicating that the cytotoxicity of 80 in breast cancer cells is attributed to the destabilization and inactivation of HSP90 client proteins and that HSP90 inhibition represents a promising strategy to overcome trastuzumab resistance. A molecular docking study of 80 with the homology model of a HSP90 homodimer showed that 80 fit nicely in the C-terminal domain with a higher electrostatic complementary score than that of ATP.


Assuntos
Antineoplásicos/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Rotenona/análogos & derivados , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Simulação de Acoplamento Molecular , Rotenona/química , Rotenona/metabolismo , Rotenona/farmacologia , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 30(12): 127165, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305165

RESUMO

A series of isosteric surrogates of the 4-phenyl group in luminespib were investigated as new scaffolds of the Hsp90 inhibitor for the discovery of novel antitumor agents. Among the synthesized surrogates of isoxazole and pyrazole, compounds 4a, 5e and 12b exhibited potent Hsp90 inhibition in ATPase activity and Her2 degradation assays and significant antitumor activity in A2780 and HCT116 cell lines. Animal studies indicated that compared to luminespib, their activities were superior in A2780 or NCI-H1975 tumor xenograft models. A molecular modeling study demonstrated that compound 4a could fit nicely into the N-terminal ATP binding pocket.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Resorcinóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Resorcinóis/síntese química , Resorcinóis/química , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 30(3): 126838, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31864799

RESUMO

A series of indane-type acetamide and propanamide analogues were investigated as TRPV1 antagonists. The analysis of structure-activity relationship indicated that indane A-region analogues exhibited better antagonism than did the corresponding 2,3-dihydrobenzofuran and 1,3-benzodioxole surrogates. Among them, antagonist 36 exhibited potent and selective antagonism toward capsaicin for hTRPV1 and mTRPV1. Further, in vivo studies indicated that antagonist 36 showed excellent analgesic activity in both phases of the formalin mouse pain model and inhibited the pain behavior completely at a dose of 1 mg/kg in the 2nd phase.


Assuntos
Amidas/química , Indanos/química , Canais de Cátion TRPV/antagonistas & inibidores , Acetamidas/química , Acetamidas/metabolismo , Acetamidas/uso terapêutico , Amidas/metabolismo , Amidas/uso terapêutico , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Capsaicina/química , Capsaicina/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Piridinas/química , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismo
15.
J Biol Chem ; 293(22): 8330-8341, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29636415

RESUMO

Diacylglycerol (DAG) is a key lipid second messenger downstream of cellular receptors that binds to the C1 domain in many regulatory proteins. Protein kinase C (PKC) isoforms constitute the most prominent family of signaling proteins with DAG-responsive C1 domains, but six other families of proteins, including the chimaerins, Ras-guanyl nucleotide-releasing proteins (RasGRPs), and Munc13 isoforms, also play important roles. Their significant involvement in cancer, immunology, and neurobiology has driven intense interest in the C1 domain as a therapeutic target. As with other classes of targets, however, a key issue is the establishment of selectivity. Here, using [3H]phorbol 12,13-dibutyrate ([3H]PDBu) competition binding assays, we found that a synthetic DAG-lactone, AJH-836, preferentially binds to the novel PKC isoforms PKCδ and PKCϵ relative to classical PKCα and PKCßII. Assessment of intracellular translocation, a hallmark for PKC activation, revealed that AJH-836 treatment stimulated a striking preferential redistribution of PKCϵ to the plasma membrane relative to PKCα. Moreover, unlike with the prototypical phorbol ester phorbol 12-myristate 13-acetate (PMA), prolonged exposure of cells to AJH-836 selectively down-regulated PKCδ and PKCϵ without affecting PKCα expression levels. Biologically, AJH-836 induced major changes in cytoskeletal reorganization in lung cancer cells, as determined by the formation of membrane ruffles, via activation of novel PKCs. We conclude that AJH-836 represents a C1 domain ligand with PKC-activating properties distinct from those of natural DAGs and phorbol esters. Our study supports the feasibility of generating selective C1 domain ligands that promote novel biological response patterns.


Assuntos
Diglicerídeos/química , Lactonas/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Células A549 , Ligação Competitiva , Células HeLa , Humanos , Ligantes , Ligação Proteica , Transporte Proteico , Especificidade por Substrato
16.
Pharmacol Res ; 149: 104466, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31562895

RESUMO

Neural stem cells (NSCs) proliferate and differentiate into neurons and glia depending on the culture environment. However, the underlying mechanisms determining the fate of NSCs are not fully understood. Growth factors facilitate NSC proliferation through mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) and MAPK activation, and NSCs differentiate into neurons, astrocytes, or oligodendrocytes when mitogens are withdrawn from the culture media. Here, we aimed to identify the effects and roles of MEK signaling on the determination of NSC fate. MEK inhibitors, U0126, SL327, and PD98059, had differential effects on NSC differentiation. U0126 and SL327, which are known to inhibit MEK1 and MEK2, induced neuronal differentiation, whereas PD98059, which is reported to preferentially inhibit MEK1 at higher concentrations, increased astrocytogenesis. Knockdown of MEK2 using small interfering RNA increased neurogenesis and over-expression of wild type (WT) MEK2 inhibited neurogenesis, suggesting a repressive role of MEK2 in neuronal differentiation. The chemical structure of PD98059 appears to be important for induction of astrocytogenesis because not only PD98059 (2'-amino-3'-methoxyflavone) but also its chemical structural mimetic, 3'-methoxyflavone, enhanced astrocytogenesis. Therefore, in our study, we suggest that MEK inhibitors have distinct functions in determining NSC fate. Inhibition of MEK2 is important for induction of neurogenesis in NSCs. U0126 and SL327 increase neurogenesis through MEK2 inhibition, whereas PD98059 induced astrocytogenesis in NSCs, which is mediated by the chemical structure, particularly the 3'-methoxy group rather than its renowned MEK1 inhibition.


Assuntos
MAP Quinase Quinase 2/antagonistas & inibidores , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Butadienos/farmacologia , Células Cultivadas , Flavonoides/farmacologia , MAP Quinase Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Neurais/citologia , Nitrilas/farmacologia , Ratos
17.
Bioorg Med Chem ; 27(6): 1099-1109, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30755350

RESUMO

Leucyl-tRNA synthetase (LRS) plays an important role in amino acid-dependent mTORC1 signaling, which is known to be associated with cellular metabolism and proliferation. Therefore, LRS-targeting small molecules that can suppress mTORC1 activation may provide an alternative strategy to current anticancer therapy. In this work, we developed a library of leucyladenylate sulfate analogues by extensively modifying three different pharmacophoric regions comprising adenine, ribose and leucine. Several effective compounds were identified by cell-based mTORC1 activation assays and further tested for anticancer activity. The selected compounds mostly exhibited selective cytotoxicity toward five different cancer cell lines, supporting the hypothesis that the LRS-mediated mTORC1 pathway is a promising alternative target to current therapeutic approaches.


Assuntos
Leucina-tRNA Ligase/metabolismo , Leucina/análogos & derivados , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Leucina/química , Leucina/metabolismo , Leucina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
18.
Bioorg Med Chem ; 27(7): 1370-1381, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30827868

RESUMO

On the basis of deguelin, a series of the B,C-ring truncated surrogates with N-substituted amide linkers were investigated as HSP90 inhibitors. The structure activity relationship of the template was studied by incorporating various substitutions on the nitrogen of the amide linker and examining their HIF-1α inhibition. Among them, compound 57 showed potent HIF-1α inhibition and cytotoxicity in triple-negative breast cancer lines in a dose-dependent manner. Compound 57 downregulated expression and phosphorylation of major client proteins of HSP90 including AKT, ERK and STAT3, indicating that its antitumor activity was derived from the inhibition of HSP90 function. The molecular modeling of 57 demonstrated that 57 bound well to the C-terminal ATP-binding pocket in the open conformation of the hHSP90 homodimer with hydrogen bonding and pi-cation interactions. Overall, compound 57 is a potential antitumor agent for triple-negative breast cancer as a HSP90 C-terminal inhibitor.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Rotenona/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Rotenona/síntese química , Rotenona/química , Rotenona/farmacologia , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 28(14): 2539-2542, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29884534

RESUMO

A series of A-region analogues of 2-(3-fluoro-4-methylsufonamidophenyl) propanamide 1 were investigated as TRPV1 antagonists. The analysis of structure-activity relationship indicated that a fluoro group at the 3- (or/and) 5-position and a methylsulfonamido group at the 4-position were optimal for antagonism of TRPV1 activation by capsaicin. The most potent antagonist 6 not only exhibited potent antagonism of activation of hTRPV1 by capsaicin, low pH and elevated temperature but also displayed highly potent antagonism of activation of rTRPV1 by capsaicin. Further studies demonstrated that antagonist 6 blocked the hypothermic effect of capsaicin in vivo, consistent with its in vitro mechanism, and it showed promising analgesic activity in the formalin animal model.


Assuntos
Amidas/farmacologia , Descoberta de Drogas , Canais de Cátion TRPV/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Animais , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismo
20.
Bioorg Med Chem ; 26(15): 4509-4517, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30078610

RESUMO

A series of 2-(3,5-substituted 4-aminophenyl)acetamide and propanamide derivatives were investigated as human TRPV1 antagonists. The analysis of the structure-activity relationship indicated that 2-(3,5-dihalo 4-aminophenyl)acetamide analogues displayed excellent antagonism of hTRPV1 activation by capsaicin and showed improved potency compared to the corresponding propanamides. The most potent antagonist (36) exhibited potent and selective antagonism for hTRPV1 not only to capsaicin but also to NADA and elevated temperature; however, it only displayed weak antagonism to low pH. Further studies indicated that oral administration of antagonist 36 blocked the hypothermic effect of capsaicin in vivo but demonstrated hyperthermia at that dose. A docking study of 36 was performed in our established hTRPV1 homology model to understand its binding interactions with the receptor and to compare with that of previous antagonist 1.


Assuntos
Amidas/química , Canais de Cátion TRPV/antagonistas & inibidores , Acetamidas/química , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Amidas/farmacologia , Amidas/uso terapêutico , Sítios de Ligação , Capsaicina/química , Capsaicina/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Hipotermia/patologia , Hipotermia/prevenção & controle , Ligantes , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA