Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Res ; 216(Pt 4): 114812, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395862

RESUMO

Water quality parameters (WQP) are the most intuitive indicators of the environmental quality of water body. Due to the complexity and variability of the chemical environment of water body, simple and rapid detection of multiple parameters of water quality becomes a difficult task. In this paper, spectral images (named SPIs) and deep learning (DL) techniques were combined to construct an intelligent method for WQP detection. A novel spectroscopic instrument was used to obtain SPIs, which were converted into feature images of water chemistry and then combined with deep convolutional neural networks (CNNs) to train models and predict WQP. The results showed that the method of combining SPIs and DL has high accuracy and stability, and good prediction results with average relative error of each parameter (anions and cations, TOC, TP, TN, NO3--N, NH3-N) at 1.3%, coefficient of determination (R2) of 0.996, root mean square error (RMSE) of 0.1, residual prediction deviation (RPD) of 16.2, and mean absolute error (MAE) of 0.067. The method can achieve rapid and accurate detection of high-dimensional water quality multi-parameters, and has the advantages of simple pre-processing and low cost. It can be applied not only to the intelligent detection of environmental waters, but also has the potential to be applied in chemical, biological and medical fields.


Assuntos
Técnicas de Química Analítica , Monitoramento Ambiental , Qualidade da Água , Redes Neurais de Computação , Análise Espectral , Monitoramento Ambiental/métodos , Técnicas de Química Analítica/métodos
2.
Analyst ; 146(19): 5942-5950, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570841

RESUMO

The study of complex mixtures is very important for exploring the evolution of natural phenomena, but the complexity of the mixtures greatly increases the difficulty of material information extraction. Image perception-based machine-learning techniques have the ability to cope with this problem in a data-driven way. Herein, we report a 2D-spectral imaging method to collect matter information from mixture components, and the obtained feature images can be easily provided to deep convolutional neural networks (CNNs) for establishing a spectral network. The results demonstrated that a single CNN trained end-to-end from the proposed images can directly accomplish synchronous measurement of multi-component samples using only raw pixels as inputs. Our strategy has some innate advantages, such as fast data acquisition, low cost, and simple chemical treatment, suggesting that it can be extensively applied in many fields, including environmental science, biology, medicine, and chemistry.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Misturas Complexas , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador
3.
Analyst ; 145(6): 2197-2203, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32096804

RESUMO

Due to the complexity of nonlinear reactions, the analysis of environmental samples often relies on expensive equipment as well as tedious and time-consuming experimental procedures. Currently, the efficient machine learning (ML) strategy based on big data offers some new insights for the analysis of complex components in the environmental field. In this study, ML was applied for the analysis of total organic carbon (TOC). We prepared a special colorimetric sensor (c-sensor) by inkjet printing. The sensor reacted with water samples in a high-throughput process, producing characteristic patterns to map TOC information in water samples. To quickly acquire TOC information on c-sensors, a ML model was proposed to describe the relationship between the c-sensor and TOC value. According to this study, the c-sensor and ML can be effectively applied to TOC information analysis of environmental water samples, which provides convenience for environmental research. It is foreseeable that ML has a broad prospect of application in environmental research.

4.
Water Sci Technol ; 76(11-12): 3069-3078, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29210692

RESUMO

A novel magnetically separable magnetic activated carbon supporting-copper (MCAC) catalyst for catalytic wet peroxide oxidation (CWPO) was prepared by chemical impregnation. The prepared samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). The catalytic performance of the catalysts was evaluated by direct violet (D-BL) degradation in CWPO experiments. The influence of preparative and operational parameters (dipping conditions, calcination temperature, catalyst loading H2O2 dosage, pH, reaction temperature, additive salt ions and initial D-BL concentration) on degradation performance of CWPO process was investigated. The resulting MCAC catalyst showed higher reusability in direct violet oxidation than the magnetic activated carbon (MAC). Besides, dynamic tests also showed the maximal degradation rate reached 90.16% and its general decoloring ability of MCAC was 34 mg g-1 for aqueous D-BL.


Assuntos
Compostos Azo/química , Corantes/química , Cobre/química , Catálise , Carvão Vegetal , Magnetismo , Microscopia Eletrônica de Varredura , Oxirredução , Peróxidos/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Difração de Raios X
5.
Bull Environ Contam Toxicol ; 97(3): 303-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27342589

RESUMO

Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution.


Assuntos
Monitoramento Ambiental , Poluição Ambiental/estatística & dados numéricos , Metais Pesados/análise , Poluentes do Solo/análise , Arsênio , Cádmio/análise , China , Cromo/análise , Cobre/análise , Solo , Zinco/análise
6.
Environ Sci Pollut Res Int ; 31(18): 26555-26566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448769

RESUMO

Drinking water is vital for human health and life, but detecting multiple contaminants in it is challenging. Traditional testing methods are both time-consuming and labor-intensive, lacking the ability to capture abrupt changes in water quality over brief intervals. This paper proposes a direct analysis and rapid detection method of three indicators of arsenic, cadmium, and selenium in complex drinking water systems by combining a novel long-path spectral imager with machine learning models. Our technique can obtain multiple parameters in about 1 s. The experiment involved setting up samples from various drinking water backgrounds and mixed groups, totaling 9360 injections. A raw visible light source ranging from 380 to 780 nm was utilized, uniformly dispersing light into the sample cell through a filter. The residual beam was captured by a high-definition camera, forming a distinctive spectrum. Three deep learning models-ResNet-50, SqueezeNet V1.1, and GoogLeNet Inception V1-were employed. Datasets were divided into training, validation, and test sets in a 6:2:2 ratio, and prediction performance across different datasets was assessed using the coefficient of determination and root mean square error. The experimental results show that a well-trained machine learning model can extract a lot of feature image information and quickly predict multi-dimensional drinking water indicators with almost no preprocessing. The model's prediction performance is stable under different background drinking water systems. The method is accurate, efficient, and real-time and can be widely used in actual water supply systems. This study can improve the efficiency of water quality monitoring and treatment in water supply systems, and the method's potential for environmental monitoring, food safety, industrial testing, and other fields can be further explored in the future.


Assuntos
Água Potável , Monitoramento Ambiental , Aprendizado de Máquina , Poluentes Químicos da Água , Abastecimento de Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Potável/química , Qualidade da Água , Arsênio/análise , Cádmio/análise
7.
Anal Chim Acta ; 1143: 298-305, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33384125

RESUMO

Determination of complex pollutants often involves many high-cost and laborious operations. Today's pop machine-learning (ML) technology has exhibited their amazing successes in image recognition, drug designing, disease detection, natural language understanding, etc. ML-driven samples testing will inevitably promote the development of related subjects and fields, but the biggest challenge ahead for this process is how to provide some intelligible and sufficient data for various algorithms. In this work, we present a full strategy for rapid detecting mixed pollutants through the synergistic application of holographic spectrum and convolutional neural network (CNN). The results have shown that a well-trained CNN model could realize quantitative analysis of the mixed pollutants by extracting spectral information of matters, suggesting the strategy's value in facilitating the study of complex chemical systems.

8.
Talanta ; 207: 120299, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594611

RESUMO

Analysis on mixture toxicity (Mix-tox) of the multi-chemical space is constantly followed with interest for many researchers. Conventional toxicity tests with time-consuming and costly operations make researchers can only establish some toxicity prediction models aiming to a limited sampling dimension. The rapid development of machine learning (ML) algorithm will accelerate the exploration of many fields involving toxicity analysis. Rather than the model calculation capacity, the challenge of this process mainly comes from the lack of toxicology big-data to perform toxicity perception through the ML model. In this paper, a full strategy based a standardized high-throughput experiment was developed for Mix-tox analysis throughout the whole routine, from big-sample dataset design, model building, and training, to the toxicity prediction. Using the concentration variates as input and bio-luminescent inhibition rate as output, it turned out that a well-trained random forest algorithm was successfully applied to assess the mixtures' toxicity effect, suggesting its value in facilitating adoption of Mix-tox analysis.


Assuntos
Aprendizado de Máquina , Impressão , Testes de Toxicidade/instrumentação
9.
Chem Commun (Camb) ; 56(7): 1058-1061, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31872203

RESUMO

A machine learning (ML) strategy based on color-spectral images for mixed amino acid (AA) analysis is presented. The results showed that a well-trained ML model could accurately predict multiple AAs at the same time, suggesting its value for facilitating quantitative analysis of mixed AA systems.

10.
Anal Sci ; 33(1): 1-3, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28070062

RESUMO

A simple method was created and implemented through the technology of ink-jet printing to study the effects of three chemical factors (chemical reagents) to the ninhydrin reaction. The effects of each single reagent and their interactions on the reaction were studied in one experiment. The three reagents all have effects on ninhydrin reaction, and the effects under the different combinations of reagents were presented on a chip. This work was completed efficiently with a smaller experimental workload compared with the traditional method.

11.
Chem Commun (Camb) ; 52(14): 2944-7, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26777131

RESUMO

A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA